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a b s t r a c t

In most domains of network analysis researchers consider networks that arise in nature with weighted
edges. Such networks are routinely dichotomized in the interest of using available methods for statistical
inference with networks. The generalized exponential random graph model (GERGM) is a recently pro-
posed method used to simulate and model the edges of a weighted graph. The GERGM specifies a joint
distribution for an exponential family of graphs with continuous-valued edge weights. However, current
estimation algorithms for the GERGM only allow inference on a restricted family of model specifica-
tions. To address this issue, we develop a Metropolis–Hastings method that can be used to estimate any
GERGM specification, thereby significantly extending the family of weighted graphs that can be modeled
with the GERGM. We show that new flexible model specifications are capable of avoiding likelihood

degeneracy and efficiently capturing network structure in applications where such models were not pre-
viously available. We demonstrate the utility of this new class of GERGMs through application to two real
network data sets, and we further assess the effectiveness of our proposed methodology by simulating
non-degenerate model specifications from the well-studied two-stars model. A working R version of the
GERGM code is available in the supplement and is incorporated in the GERGM CRAN package.

© 2016 Elsevier B.V. All rights reserved.
. Introduction

Throughout the sciences, but particularly in the social sciences,
fundamental tool for the statistical analysis of networks has

een the exponential random graph model (ERGM) – a popular,
owerful, and flexible tool for statistical inference with network
ata (Holland and Leinhardt, 1981; Wasserman and Pattison, 1996;

nijders et al., 2006). Despite their popularity, conventionally used
RGMs have the major limitation that they require the edges of an
bserved network be binary (representing the presence or absence
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of an edge). Thus ERGMs cannot directly model weighted networks.
Since many substantively important networks are weighted, this
restriction is especially problematic. Weighted networks arise, for
example, in the study of financial exchange (Iori et al., 2008), migra-
tion patterns (Chun, 2008), and in the analysis of brain functionality
and connectivity (Simpson et al., 2011). Recently, some progress on
modeling weighted networks in the ERGM framework was made in
Desmarais and Cranmer (2012), where the generalized exponential
random graph model (GERGM) was proposed to study networks
with continuous-valued edges. Around the same time, Krivitsky
(2012) proposed the weighted exponential random graph model
that generalized the ERGM to networks with integer-valued edges.
Robins et al. (1999) developed logistic dyad-independent models
for networks with integer-valued edges. Though each of these mod-
els provides a means to analyze weighted networks, we will focus

on extensions to the GERGM.

In general, the likelihood function of an ERGM is intractable
(though some recent progress has been made in the large net-
work n → ∞ limit (Chatterjee et al., 2013; Lubetzky and Zhao,
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014)); however, efficient estimation can be achieved through
he use of Markov Chain Monte Carlo (MCMC) algorithms (Geyer
nd Thompson, 1992; Hunter and Handcock, 2006). MCMC can be
sed to simulate samples of networks from which the likelihood
unction of an ERGM can be approximated. Like the ERGM, esti-

ation of the GERGM is readily achieved via MCMC algorithms.
esmarais and Cranmer (2012) proposed a Gibbs sampling tech-
ique for GERGM estimation; however, this strategy limits the
pecification of network dependencies captured by the GERGM to
hose for which full conditional edge distributions can be derived
n closed form. Another important obstacle that arises in discrete
xponential family model specification is the problem of degener-
cy, a condition under which only a few network configurations –
sually very sparse and very dense networks - have high probability
ass (Handcock et al., 2003; Rinaldo et al., 2009; Schweinberger,

011). The issue of degeneracy strongly influences the effective-
ess of an MCMC algorithm. Indeed, in the case that nearly empty
or nearly complete) networks are most probable, estimation via

CMC will fail to converge to consistent parameter estimates.
Here, we expand the family of weighted networks that can be

nalyzed under the GERGM by developing a Metropolis–Hastings
ampling procedure that allows the flexible specification of net-
ork statistics and models under the GERGM framework. Perhaps

he greatest drawback of the limited set of models for which Gibbs
ampling can be used to simulate networks is that they are prone to
egeneracy. This is due to the fact that the closed-form derivation
f the conditional distribution of an edge requires that the network
tatistics used to specify the GERGM depend linearly on the value of
ach edge. GERGM specifications that include nonlinear statistics
re often required to avoid degeneracy. A significant advantage of
ur proposed Metropolis–Hastings (MH) procedure is that one can
se MH sampling to estimate models that involve nonlinear net-
ork statistics. The expanded set of GERGM specifications made

vailable with the use of MH can be used to find a non-degenerate
odel specification. Furthermore, in models where the Gibbs sam-

ler can be used, Metropolis–Hastings yields the same parameter
stimates as those obtained via Gibbs. The framework established
ere provides an important step in flexibly modeling and simulat-

ng weighted networks while further providing a means of avoiding
odel degeneracy.
In Section 2, we describe the generalized exponential random

raph model for graphs with continuous-valued edges. In Section 3,
e discuss the Monte Carlo maximum likelihood estimation of

he GERGM and briefly describe the Gibbs procedure devised in
esmarais and Cranmer (2012). At the end of Section 3, we for-
ulate a flexible Metropolis–Hastings sampling procedure. We

ropose a class of model specifications in Section 4 that expands the
amily of GERGMs beyond those permissible under Gibbs sampling.
n Section 5, we evaluate the performance and potential utility
f our proposed framework through application to the U.S. state-
o-state migration network, an international financial exchange
etwork, as well as through a simulation study that revisits the
egenerate two-star-model of Handcock et al. (2003). We conclude
ith a discussion of open problems and future work in Section 6.

. The generalized exponential random graph model

Consider a directed network defined on a node set [n] = {1, 2,
. ., n}, where m = n(n − 1) denotes the total number of directed
dges between these nodes. Suppose that the weighted relation-
hips between the nodes are represented by a collection of weights

yij : i /= j ∈ [n]) ∈ Rm. The aim of this section is to describe a spe-
ific class of probability models on Rm as constructed in Desmarais
nd Cranmer (2012) called GERGMs that incorporates relational
tructure between the nodes to generate a random vector Y ∈ Rm.
orks 49 (2017) 37–47

This probability distribution is specified by a joint probability den-
sity function (pdf) fY(y, �) driven by real-valued parameters �.

A GERGM for the observed configuration y has a simple gen-
erative process that relies on two distinct steps. First, a joint
distribution that captures the structure and interdependence of Y is
defined on a restricted network configuration, X ∈ [0, 1]m. Next, the
restricted network X is transformed onto the support of Y through
an appropriate transformation function. These two steps are closely
related to the widely studied specification of joint distributions via
copula functions (Genest and MacKay, 1986). We now describe the
two steps in specifying a GERGM in more detail.

In the first specification step, a function of network summary
statistics h : [0, 1]m → R

p is formulated to represent the joint fea-
tures of X. The random vector X is modeled by an exponential family
with parameters � ∈ Rp as follows:

fX (x, �) = exp(�′h(x))∫
[0,1]m exp(�′h(z))dz

, x ∈ [0, 1]m, (1)

where �′ denotes the transpose of the vector �. The network spec-
ification in model (1) is closely related to the usual specification
of exponential random graph models on binary edges with the
exception that individual edges are now modeled as having con-
tinuous weights taking values between 0 and 1. As dependence
relationships can be captured by functions of edges valued on the
unit interval, model (1) provides a flexible specification of interde-
pendence. For instance, networks generated by a highly reciprocal
process are likely to exhibit high values of

∑
i<jxijxji, and those for

which there is a high variance in the popularity of vertices (e.g.,
preferential attachment) are likely to exhibit high values of the
“two-stars” statistic

∑
i
∑

j,k /= ixjixki (Park and Newman, 2004a).
We describe several flexible network statistics for modeling inter-
dependence in Section 4. Note that the uniform distribution on [0,
1]m is a special case of the model above, obtained by setting the
parameters � = 0.

In the second specification step, a one-to-one and coordinate
wise monotonically non-decreasing function T−1 : [0, 1]m → R

m is
formulated to model the transformation of the restricted network
X onto the support of Y. Specifically, for each pair of distinct nodes i,
j ∈ [n], we model Yij = T−1

ij
(X, ˇ) where ˇ ∈ Rk parameterizes the

transformation so as to capture the marginal features of Y. Since
T−1 is a monotonically non-decreasing, the pdf of Y is given by

fY (y, �, ˇ) = exp(�′h(T(y, ˇ)))∫
[0,1]m exp(�′h(z))dz

∏
ij

tij(y, ˇ), y ∈ Rm (2)

where tij(y, ˇ) = dTij(y, ˇ)/dyij. Though the choice of T−1 is flexible,
specifying T−1 so that T−1

ij
is an inverse cumulative distribution

function (cdf) is advisable because the properties of (2) are diffi-
cult to understand without this restriction and because it leads to
several beneficial properties. First, when T−1 is an inverse cdf, tij is
precisely a marginal pdf for all i /= j. Second, when � = 0, then fY(y,
�, ˇ) reduces to a product of marginal pdfs {tij} and thus in this
special case one obtains a model with dyadic independence acorss
edge weight distributions. An important example includes taking
T−1 as the inverse of a Gaussian cdf with constant variance. In this
special case, if � = 0 then (2) reduces to a model for conditionally
independent Gaussian observations, such as ordinary least squares
regression.

3. Model inference
The GERGM specification in Eqs. (1) and (2) can be used to
readily model a wide range of network interdependencies in
weighted networks. In this section, we describe maximum like-
lihood inference of the parameters � and ˇ via MCMC. We review
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he Gibbs sampling procedure in Desmarais and Cranmer (2012),
hich relies on an important restriction of model specification.
e then develop a general inferential framework for sampling

ia Metropolis–Hastings, which extends the family of GERGM
pecifications. We provide pseudo-code for the MCMC maximum
ikelihood estimation procedure described in Sections 3.1–3.4 in
he Appendix.

.1. Maximum likelihood inference

Given a specification of statistics h(·), transformation function
−1, and observations Y = y from the distribution (2), our goal is
o find the maximum likelihood estimates (MLEs) of the unknown
arameters � and ˇ, namely to find values �̂ and ˆ̌ that maximize
he log likelihood:

(�, ˇ|y) = �′h(T(y, ˇ)) − log C(�) +
∑

ij

log tij(y, ˇ), (3)

here

(�) =
∫

[0,1]m
exp(�′h(z))dz.

The maximization of (3) can be achieved through alternate max-
mization of ˇ|� and �|ˇ. In particular, one can calculate the MLEs
ˆ and ˆ̌ by iterating between the following two steps until conver-
ence.

For r ≥ 1, iterate until convergence:

. Given �(r), estimate ˇ(r)|�(r):

ˇ(r) = argmaxˇ

⎛
⎝�(r)h(T(y, ˇ)) +

∑
ij

log tij(y, ˇ)

⎞
⎠ . (4)

. Set x̂ = T(y, ˇ(r)). Then estimate �(r+1)|ˇ(r):

�(r+1) = argmax�(�′h(x̂) − log C(�)). (5)

For fixed �, the likelihood maximization in (4) is straightfor-
ard and can be accomplished numerically using gradient descent

Snyman, 2005). In the case that tij is log-concave and h ◦ T is con-
ave in ˇ, a hill climbing algorithm is assured to find the global
ptimum.

The maximization in (5) is a difficult problem due to the
ntractability of the normalization factor C(�). There has been

uch recent work on circumventing the intractability of C(�).
or example, Strauss and Ikeda (1990) consider using the max-
mim pseudo-likelihood estimate (MPLE) for �, which assumes
ndependence of the edges in the graph. Van Duijn et al. (2009)
hows, however, that using the MPLE is often biased and far less
fficient than the maximum likelihood estimate especially when
trong network dependencies are present. In light of the ineffi-
iency of pseudo-likelihood estimates, we turn to MCMC methods
or estimating (5) which have witnessed considerable success in
stimating exponential family models (Geyer and Thompson, 1992;
unter and Handcock, 2006). We describe the MCMC framework

or estimating � and then review the constrained Gibbs procedure
eveloped in Desmarais and Cranmer (2012) before introducing
ur new more flexible Metropolis–Hastings procedure.
.2. Monte Carlo maximization in the GERGM

Let � and �̃ be two arbitrary vectors in Rp and let C(·) be defined
s in (3). The crux of optimizing (5) via Monte Carlo simulation
orks 49 (2017) 37–47 39

relies on the following property of exponential families (Geyer and
Thompson, 1992):

C(�)

C(�̃)
= E

�̃

[
exp
(

(� − �̃)′h(X)
)]

. (6)

The expectation in (6) is not directly computable; however,
a first order approximation to this quantity is given by the first
moment estimate:

E
�̃

[
exp
(

(� − �̃)′h(X)
)]

≈ 1
M

M∑
j=1

exp
(

(� − �̃)′h(x(j))
)

, (7)

where x(1), . . ., x(M) is an observed sample from pdf fX ( · , �̃).
Define �(�|x̂) := �h(x̂) − log C(�). Then maximizing �(�|x̂) with

respect to � ∈ Rp is equivalent to maximizing �(�|x̂) − �(�̃|x̂) for
any fixed arbitrary vector �̃ ∈ Rp. Eqs. (6) and (7) suggest:

�(�|x̂) − �(�̃|x̂) ≈ (� − �̃)′h(x̂) − log

⎛
⎝ 1

M

M∑
j=1

exp
(

(� − �̃)′h(x(j))
)⎞⎠ .

(8)

An estimate for � can now be calculated by the maximization of
(8). The r + 1st iteration estimate �(r+1) in (5) can be obtained using
Monte Carlo methods by iterating between the following two steps:

Given ˇ(r), �(r), and x̂ = T(y, ˇ(r))

1. Simulate networks x(1), . . ., x(M) from density fX(x , �(r)) .
2. Update:

�
(r+1) = argmax�

(
�

′h(x̂) − log

(
1
M

M∑
j=1

exp
(

(� − �
(r))′h(x(j))

)))
. (9)

Given observations Y = y, the Monte Carlo algorithm described
above requires an initial estimate ˇ(0) and �(1). We initialize
ˇ0 using (4) in the case that there are no network dependen-
cies present, namely, ˇ(0) = argmax�{

∑
ij logtij(y, ˇ)}. We then fix

xobs = T(y, ˇ0), and use the Robbins–Monro algorithm for exponen-
tial random graph models described in Snijders (2002) to initialize
�(1). This initialization step can be thought of as the first step of
a Newton–Raphson update of the MPLE estimate �MPLE on a small
sample of networks generated from the density fX(xobs, �MPLE).

The first step of the Monte Carlo algorithm requires simulation
from the density fX(x, �(r)). As this density cannot be directly com-
puted, one must rely on the use of MCMC methods, such as Gibbs
or Metropolis–Hastings samplers, for estimation.

3.3. Simulation via Gibbs sampling

The Gibbs sampling procedure described in Desmarais and
Cranmer (2012) provides a straightforward way to estimate �
through the iterative optimization of (8); however, its use restricts
the specification of network statistics h(·) in the GERGM formu-
lation. In particular, the use of Gibbs sampling requires that the
network dependencies in an observed network y are captured

through x by first order network statistics, namely statistics h(·)
that are linear in xij for all i, j ∈ [n]. With this assumption, one
can derive a closed-form conditional distribution of Xij given the
remaining network, X−(ij), which is used in Gibbs sampling.
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Let fXij |X−(ij)
(xij, �) denote the conditional pdf of Xij given the

emaining restricted network X−(ij). Consider the following condi-
ion on h(x):

∂2h(x)

∂x2
ij

= 0, i, j ∈ [n] (10)

Assuming that (10) holds, one can readily derive a closed form
xpression for fXij |X−(ij)

(xij, �):

Xij |X−(ij)
(xij, �) =

exp
(

xij
�′∂h(x)

∂xij

)
(

�′ ∂h(x)
∂xij

)−1 [
exp(�′ ∂h(x)

∂xij
) − 1

] (11)

Let U be uniform on (0, 1). Using the conditional density in (11),
ne can simulate values of x ∈ Rm iteratively by drawing edge real-
zations of Xij|X−(ij) according to the following distribution:

ij|X−ij∼
log
[

1 + U
(

exp
(

�′ ∂h(x)
∂xij

)
− 1
)]

�′ ∂h(x)
∂xij

, �′ ∂h(x)
∂xij

/= 0 (12)

hen �′ ∂h(x)
∂xij

= 0, all values in [0,1] are equally likely; thus, Xij|X−(ij)

s simply drawn uniformly from support [0,1]. The Gibbs simulation
rocedure simulates network samples x(1), . . ., x(M) from fX(x, �) by
equentially sampling each edge from its conditional distribution
iven in (12).

Assumption (10) greatly restricts the class of models that can
e fit under the GERGM framework. To appropriately fit structural
eatures of a network such as the degree distribution, reciprocity,
lustering or assortative mixing, it may be necessary to use net-
ork statistics that involve nonlinear functions of the edges. Under
ssumption (10), nonlinear functions of edges are not permitted –
limitation that may prevent theoretically or empirically appropri-
te models of networks in many domains. Furthermore, as we will
emonstrate in our numerical study, exponentially weighted net-
ork statistics like those in Table 1 can provide a means to flexibly
odel networks. This is particularly beneficial in cases where a the-

retically appropriate non-degenerate model cannot be identified
ithin the restricted class of GERGMs. To incorporate the afore-
entioned statistics and extend the class of available GERGMs, we

evelop a general inferential framework via Metropolis–Hastings
hat is applicable to any GERGM specification.

.4. A general inferential framework via Metropolis–Hastings

An alternative and more flexible way to sample a collection
f networks from the density fX(x, �) is the Metropolis–Hastings
rocedure. The Metropolis–Hastings procedure that we propose
amples the t + 1st network, x(t+1), via a truncated multivariate

aussian proposal distribution q(·|x(t)) whose mean depends on the
revious sample x(t) and whose variance is a fixed constant �2. The
runcated Gaussian is a convenient and commonly used proposal
istribution for bounded random variables such as those on the [0,

able 1
ummary of network statistics used in the specification of a GERGM in this work. These a

Network statistic Parameter Val

Reciprocity 
R

(∑
Cyclic triads 
CT

(∑
In-two-stars 
ITS

(∑
Out-two-stars 
OTS

(∑
Edge density 
E

(∑
Transitive triads 
TT

(∑
orks 49 (2017) 37–47

1] interval with which we are working (see, e.g., Browne, 2006;
Claeskens et al., 2010; Müller, 2010; Neelon et al., 2014; Franks
et al., 2015). The advantage of the truncated Gaussian over the
obvious alternative for bounded random variables – the Beta distri-
bution – is that it is straightforward to concentrate the density of the
truncated Gaussian around any point within the bounded range. For
example, a truncated Gaussian with � = 0.75 and � = 0.05 will result
in proposals that are nearly symmetric around 0.75 and stay within
0.6 and 0.9. In practice, we found the shape of the Beta distribution
to be less amenable to precise concentration around points within
the unit interval, which leads to problematic acceptance rates in
the Metropolis–Hastings algorithm.

We say that w is a sample from a truncated normal distribution
on [a, b] with mean � and variance �2 (written W ∼ TN(a,b)(�, �2))
if the pdf of W is given by:

gW (w|�, �2, a, b) =
�−1�

(
w−�

�

)
�
(

b−�
�

)
− �

(
a−�

�

) , a ≤ w ≤ b

where �(·|�, �2) is the pdf of a N(�, �2) random variable and �(·) is
the cdf of the standard normal random variable. To ease notation,
we write the truncated normal density on the unit interval as

q�(w|x) = gW (w|x, �2, 0, 1) (13)

This will be our proposal density. Denote the weight between node
i and j for sample t by x(t)

ij
. The Metropolis–Hastings procedure we

employ generates sample x(t+1) sequentially according to an accep-
tance/rejection algorithm. The t + 1st sample x(t+1) is generated as
follows.

1. For i, j ∈ [n], generate proposal edge x̃(t)
ij

∼q�(w|x(t)
ij

) indepen-
dently across edges.

2. Set

x(t+1) =
{

x̃(t) = (x̃(t)
ij

)
i,j ∈ [n]

w.p. 	(x(t), x̃(t))

x(t) w.p. 1 − 	(x(t), x̃(t))

where

	(x, y) = min

⎛
⎝ fX (y|�)

fX (x|�)

∏
i,j ∈ [n]

q�(xij|yij)
q�(yij|xij)

, 1

⎞
⎠

= min

⎛
⎝exp

(
�′(h(y) − h(x))

) ∏
i,j ∈ [n]

q�(xij|yij)
q�(yij|xij)

, 1

⎞
⎠ (14)
The acceptance probability 	(x(t), x̃(t)) can be thought of as a
likelihood ratio of the proposed network given the current network
x(t) and the current network given the proposal x̃(t). Large values of
	(x(t), x̃(t)) suggest a higher likelihood of the proposal network. It is

re the ˛-outside specification of five commonly-used network statistics.

ue

i<j
xijxji

)˛R

i<j<k

(
xijxjkxki + xikxkjxji

))˛CT

i

∑
j<k /= i

xjixki

)˛ITS

i

∑
j<k /= i

xijxik

)˛OTS

i /= j
xij

)˛E

i<j<k
(xijxjkxik + xijxkjxki + xijxkjxik) +

∑
i<j<k

(xjixjkxki + xjixjkxik + xjixkjxki)
)˛TT
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eadily verified that the resulting samples {x(t), t = 1, . . ., M} form a
arkov Chain whose stationary distribution is the target pdf fX(·|�).
The proposal variance parameter �2 influences the average

cceptance rate of the Metropolis–Hastings procedure described
bove. Indeed, the value of �2 tends to be inversely related to the
verage acceptance rate of the algorithm. Roberts et al. (1997) ana-
yzed the efficiency of general random walk Metropolis algorithms
nd found that an acceptance rate of 0.234 optimized the conver-
ence rate of this class of algorithms. Following their heuristic, we
uggest tuning �2 so that the average acceptance rate is approxi-
ately 0.25.1

The Metropolis–Hastings algorithm requires specification of an
nitial sample x(1). To this end, we sample x(1) from a collection of
ndependent uniform random variables on the unit interval. We
et a sufficient burn-in so that the resulting chain of M samples
ave converged. To test the convergence of the samples, we use
he Geweke dignostic test for stationarity (Geweke, 1991) on the
etwork statistics associated with the collection of samples. Fur-
hermore, traceplots of the network statistics can be used to readily
urveil the convergence of the network samples. We illustrate how
o diagnose convergence in the numerical study in the Appendix.

. Flexible model specification

In the context of the dichotomous ERGM, a substantial litera-
ure has arisen around how to best formulate network statistics
hat represent important generative relational processes such as
ransitivity, balance, and preferential attachment (Wasserman and
attison, 1996; Park and Newman, 2004b; Snijders et al., 2006;
unter et al., 2008). The initial development of ERGM specifications

ocused on local subgraph counts, such as the number of two-stars
nd triangles, that implied straightforward conditional distribu-
ions for each tie given the rest of the network (i.e., Markov graphs
Frank and Strauss, 1986)). Intermediate extensions of the standard
uite of network statistics used in ERGM specifications focused
n more advanced or higher-order subgraph counts (Pattison and
obins, 2002), reflecting longer paths and clique-like structures
mong node sets.

Unfortunately, in most cases, these motif-count specifications
ead to empirically implausible models due to the problem of
egeneracy. Snijders et al. (2006), Hunter et al. (2008) propose
he use of geometrically decreasing weights in the calculation of
tatistics for transitivity, and for in- and out-degree distributions.
he down-weighting in these statistics takes effect as a single node
r edge is involved in many subgraph motifs (e.g., the contribu-
ion to the transitivity statistic from the first shared partner to two
odes incident to an edge, is more than four times the contribu-
ion of the fourth shared partner). These geometrically weighted
pecifications were shown to avoid degeneracy with much greater
uccess than models specified with simple local subgraph counts.
he geometrically weighted shared partners (GWESP) statistics
rom Snijders et al. (2006), Hunter et al. (2008) reduces the weight
f high order statistics in an ERGM and reduces the computational
omplexity of typical subgraph counting. Wyatt et al. (2010) sug-
est using the geometric mean of subgraphs as the measure of
subgraph intensity” for network statistics.

In the GERGM framework, we specify statistics that correspond
o the subgraph configurations that have proven fruitful in specify-

ng binary-valued ERGMs. Though virtually any network statistic
an be used in a GERGM specification, we focus on a flexible,
wo-pronged, weighting scheme that dampens the extremes that

1 We introduce this criterion as a heuristic for MH sampling for GERGM, since the
onditions outlined by Roberts et al. (1997) for 0.234 to be optimal do not apply to
ampling from GERGM.
orks 49 (2017) 37–47 41

arise through summed subgraph products. The geometric mean
suggested in Wyatt et al. (2010) can be seen as dampening the
change in subgraph sums with respect to subgraph product values
by exponentiating the subgraph product to an exponent between
0 and 1. The first prong in our weighted specifications can be
considered a generalization of the geometric mean. That is, we
suggest exponentiating each sub-graph by exponent (˛ ∈ (0, 1])
before summing over all subgraphs. We refer to this as ˛-inside
weighting. The second prong in our specifications represents an
extension of the triangle model specification in Lubetzky and Zhao
(2015). Lubetzky and Zhao (2015) show that raising the trian-
gle density to an exponent greater than zero, but less than 2/3
leads to an ERGM specification that is asymptotically distinguish-
able from Erdos–Renyi random graphs, which is not true of the
conventionally-specified (i.e., non-exponentiated) ERGM statistics.
We refer to the latter prong as the ˛-outside specification.

Aside from providing different empirical fit, the ˛-outside model
leads to a more complicated pattern of dependence among the
ties, with all ties dependent upon each other, to a degree. The ˛-
inside weighting leads to the local dependence common to ERGMs,
in which the change statistics (i.e., derivatives of h with respect
to edge values in the GERGM) depend upon edges in which an
edge is embedded in subgraphs relevant to the statistics. For-
mally, as long as the statistics being raised to ˛ are sub-graph
products, the ˛-inside weighting leads to a Markov graph (Frank
and Strauss, 1986) form of the GERGM, in which the joint den-
sity of the constrained (i.e., quantile) graph factorizes to a product
over functions of sub-graphs. Frank and Strauss (1986), drawing
on the Hammersley–Clifford theorem, discuss how ERGM spec-
ifications that factorize by sub-graphs exhibit local dependence
in which edges depend only on neighbors within the subgraphs.
Since it does not factorize by sub-graphs, the ˛-outside specifi-
cation leads to global dependence, in which the change statistics
depend upon the local edges as well as the global network statis-
tic values. This is readily observed by considering the derivative of
a statistic weighted according to the ˛-outside specification with
respect to a change in an edge Xij. Let h˛(X) = h(X)˛, then

dh˛

dXij
= ˛

h1−˛

dh

dXij
. (15)

We see here that the change statistic with respect to an edge
increases with the values of the edges that are local to the edge in
a given network statistic (i.e., (dh)/(dXij)), but decreases with the
global value of the network statistic (i.e., h1−˛). The decrease with
the global value of the statistic is a dampening effect according to
which the tendency to form dense motifs lessens with the aver-
age/total density of those motifs across the network. We consider
these two approaches to dampening the combinatorial growth in
network statistic values, and show that each method can be used
to avoid degeneracy in GERGM. We note that in principle one can
specify any suite of network statistics for a GERGM specification. In
this work, we specifically consider ˛-outside specification using the
statistics described in Table 1. In Section 5, we show that our chosen
flexible network statistics provide a means to avoid degeneracy in
the GERGM and capture relevant network motifs in application.

5. Applications

We assess the performance and utility of our proposed
Metroplis–Hastings procedure for the GERGM using real and sim-
ulated networks. First, we analyze an application in which the

Metropolis–Hastings sampler can be used to fit non-degenerate
model specifications in a situation where the Gibbs sampler is
not available. For this, in Section 5.1 we analyze an international
lending network that contains the aggregate bank lending volume
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Table 2
Estimates of the network parameters of the GERGM model when fit to the interna-
tional lending network via the Metropolis–Hastings procedure.

Statistic Parameter
Estimate (s.e.)

Transitive triads 1.387 (0.478)
Out two stars −2.645 (0.811)
Mutual dyads 7.023 (2.900)
G8 sender, G8 receiver 1.505 (0.186)
G8 sender, Non-G8 receiver 0.804 (0.177)
Non-G8 sender, G8 receiver 1.480 (0.147)
IGO Co-members 1.390 (0.210)
log(GDP) sender 0.606 (0.126)

trace plots of the network density for 800,000 networks simu-
lated from the fitted GERGM specification via Metropolis–Hastings
simulation also indicate that the model has converged (see Fig. 6
ig. 1. Network plot of the international aggregate interbank lending network.
arker edges indicate a larger volume of lending.

etween 17 large industrialized nations in 2005. In Section 5.2 we
nalyze the U.S. state migration network from 2006 to 2007. In
his example, we validate our Metropolis–Hastings procedure by
umerically comparing its estimates with those obtained from the
ibbs approach in Desmarais and Cranmer (2012). In Section 5.3
e explore the utility of flexible model specification for a directed

ariant of the two-star model (Handcock et al., 2003). In binary
etworks, the two-star model is known to be prone to degeneracy
iven small changes in its parameter values (Park and Newman,
004c). Our simulation study suggests that one can easily identify
on-degenerate GERGM specifications for a weighted version of the
wo-star model. Importantly, we show that under certain weight-
ngs, Metropolis–Hastings can simulate networks with any desired
dge density and clustering structure. The R code and all of the data
sed in this section are available in the online supplement.

.1. International lending network

Our first application of the GERGM is to the network of aggregate
rivate and public lending between 17 large industrialized nations

n 2005. Weighted directed edges between nations represent the
otal monetary volume, in millions of U.S. dollars, that was loaned
rom one nation to another. Fig. 1 illustrates this weighted network.
his data was collected by the Bank for International Settlements
BIS) and a descriptive analysis was originally published in Oatley
t al. (2013). To the best of our knowledge, there have been no
ublished studies of international lending using statistical net-
ork models. There are numerous theoretical, exploratory, and
escriptive analyses on international lending as a network phe-
omenon (Niemira and Saaty, 2004; Nier et al., 2007; Rodriguez,
007; Gai and Kapadia, 2010; Amini et al., 2013; Billio et al., 2012),
specially in the wake of the 2008 financial crisis. One particular
hallenge in this network is the heavy tailed nature of the lend-
ng volumes (with the majority of lending concentrated between
ermany, Great Britain, Japan, and the United States). We first apply
n ln(x+1) transformation on all aggregate lending flows between
ountries – a standard practice in international finance applications
and subsequently model the transformed edge weights using the
ERGM.

We control for several important exogenous predictors in the
ERGM specification. In particular, we include sender and receiver
ffects for the (natural log) gross domestic product (GDP) as we

xpect countries with larger economies to both lend and bor-
ow more than those with smaller economies. We also include
etwork predictors that represent (normalized) aggregate trade
olume between countries, as well as the (normalized) number of
log(GDP) receiver 4.887 (1.040)
Normalized net exports −0.068 (0.046)

inter-governmental organization (IGO) co-memberships. We
expect that countries that trade more with one another will
also lend more with one another, and that those countries that
share a larger number of co-memberships in IGOs will also be
more likely to lend more frequently with one another due to
their increased diplomatic cooperation. Finally, we include mix-
ing matrices parameterizing the propensity for countries to lend to
each other based on G8 membership2. We chose T as the cdf of a
Student’s t distribution with one degree of freedom, whose median
is a linear regression on the specified exogenous predictors.

In addition to the exogenous predictors discussed above, we
also include structural network predictors, including mutual dyads,
transitive triads, and out two-stars statistics in our model. These
statistics allow us to test for the presence of mutuality, clustering,
and economies of scale in lending, all of which are theoreti-
cally important in the international trade (Oatley et al., 2013).
Although this specification includes a number of exogenous covari-
ates for control, we find that GERGM model with no ˛ down
weighting exhibited degeneracy. To address this degeneracy, we
considered an exponentially weighted model using statistics from
Table 1. We used the Metropolis–Hastings procedure to estimate
the GERGM where network predictors were down-weighted by
˛R = ˛TT = ˛OTS = 0.8. The 0.8 value was selected because it was
the largest value for which we could consistently estimate a
non-degenerate model across multiple runs of estimation. We opti-
mized the Metropolis-Hastings proposal variance at each step in the
estimation process (with a target acceptance rate of 0.25 ± 0.05)
initialized a burn-in of 400,000 full network samples, and then
sampled 800,000 networks from which we thinned the resulting
sample by keeping every two hundredth network. The average
acceptance rate was approximately 0.22. The resulting parameter
estimates are given in Table 2. To assess convergence of the esti-
mated models, we simulated 800,000 networks and compared the
distribution of the mutual dyads, transitive triads, and out two-stars
statistics to the observed values in the lending network. Further, we
investigated the goodness of fit of our model by comparing the dis-
tributions of the simulated and observed in two-stars, cyclic triads,
and network density distributions. These results are shown in Fig. 2.

As we can see from Fig. 2, our model has appeared to have con-
verged based on the distributions of the transitive triads, mutual
dyads, and out two-stars statistics. In terms of goodness of fit, we
see that our model provides a very good fit for the observed network
in terms of cyclic triads; however, the in-two-stars and network
density values are somewhat overestimated. Geweke statistics and
2 The G8 member countries are Canada, France, Germany, Italy, Japan, Russia, the
United Kingdom and the United States.
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Fig. 2. Convergence and goodness of fit plots for the model fitted to the international
lending network. For each fit model, 800,000 networks were simulated using the
Metropolis–Hastings sampling procedure and the final exogenous and structural
parameter estimates. Each box plot compares the quantiles of simulated networks
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with mean statistic values at the red line) to the observed network statistic (blue
ine). Here, the In 2-Stars and Network Density statistics were not included in the
tted model.

n the Appendix). The exogenous covariate parameter estimates
rom our model largely conform to our theoretical expectation,
lthough it is interesting that we see a small (negative) parame-
er estimate for the effect of trade, indicating that there is not a
articularly strong relationship between trade and lending in our
etwork, when controlling for other economic and network fac-
ors. We observe positive and statistically significant transitivity
nd reciprocity effects, and a negative out-two stars effect. These
esults are interesting because previous studies, including Oatley
t al. (2013), have argued that the international lending network
s hierarchical – a property that does not match our results as we

ould expect to see a positive out two-stars parameter estimate.
urther exploration of this finding is outside of the scope of this
iscussion, but should be considered in future research.

To further asses the potential for degeneracy in our model, we
erformed a hysteresis analysis similar to that described in Snijders
t al. (2006) for each structural parameter estimate. Starting with
sparse network and holding all other parameter estimates at

heir posterior means, we varied each structural parameter esti-
ate ten standard deviations below to ten standard deviations

bove its posterior mean and simulated 500,000 networks using our

etropolis–Hastings procedure from each parameter value com-

ination (with a burning of 500,000). We changed the structural
arameter value 0.5 standard deviations at each iteration of this
rocess, for a total of 41 parameter values. For each new value of

ig. 3. Hysteresis plots for the international trade network. Shaded regions cover ±1.96
he vertical black line indicates the parameter value from the main estimation step and t
orks 49 (2017) 37–47 43

the parameter, we used the final network from the M–H simulation
using the previous parameter value as the initialization for the M–H
simulation for the new specified parameter. We plotted the mean
network density against the parameter values in order to assess the
potential for jumps in the network density that might indicate an
underlying issue with model degeneracy. Fig. 3 shows the hystere-
sis plots for our model, and these plots do not indicate any obvious
issues with degeneracy in this specification.

5.2. U.S. migration network

We next apply the GERGM to the U.S. migration network
analyzed in Desmarais and Cranmer (2012). We note that this
application is used for validation of our Metropolis–Hastings
procedure; indeed, we compare the estimates obtained with
Metropolis–Hastings directly with the estimates obtained from the
Gibbs sampler for the same GERGM specification.

Historically, interstate migration has played an important role in
the understanding of local financial markets, public infrastructure,
and the political climate within each state (Clark and Ballard, 1981;
Levine and Zimmerman, 1999; Gimpel and Schuknecht, 2001). The
network that we model contains 51 nodes that represent the 50
U.S. states as well as Washington, D.C. Directed edges are placed
between states in which there was a change in interstate migra-
tion flow from 2006 and 2007. The weight, yij, associated with the
directed edge from node i to node j is the total change in inter-
state migration from state i to state j between 2006 and 2007.
This data set also contains ten demographic exogenous predictors
that further describes the pairwise relationships between states.
The predictors describe the geographic distance, and the sender
and receiver effects of high January temperature, income, unem-
ployment, and population of the states. Like the application in
Section 5.1, we chose T as the cdf of a Student t distribution with
one degree of freedom, whose median is a linear regression on the
specified demographic predictors.

We incorporated network statistics that represent reciprocity,
cyclic triads, in-two-stars, out-two-stars, and transitive triads in
our GERGM specification, and following the model fit in Desmarais
and Cranmer (2012) we used no ˛ down-weighting.

We fit the above model using both the Metropolis–Hastings
sampling procedure and Gibbs. For Gibbs, we use 50,000 simulated
networks with a set burn-in of 10,000 networks in each iteration.
We optimized the Metropolis-Hastings proposal variance at each
step in the estimation process (with a target acceptance rate of 0.25)

initialized a burn-in of 1,000,000 full network samples, and then
sampled 2,000,000 networks from which we thinned the result-
ing sample by keeping every one thousandth network. The average
acceptance rate was approximately 0.24. The parameter estimates

standard deviations in the simulated network densities for that parameter value.
he horizontal black line indicates the observed network density.
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Table 3
Estimates of the network parameters of the GERGM model when fit to the U.S.
migration network via the Metropolis–Hastings and Gibbs sampler procedures.

Statistic M–H parameter Gibbs parameter
Estimate (s.e.) Estimate (s.e.)

Transitive triads 0.074 (0.053) 0.078 (0.053)
Cyclic triads −0.206 (0.042) −0.204 (0.040)
Out Two stars 0.017 (0.044) 0.011 (0.043)
In Two stars −0.029 (0.039) −0.030 (0.040)
Mutual dyads −0.131 (0.348) −0.107 (0.338)
Unemployment sender 27.163 (13.481) 27.402 (13.463)
Unemployment receiver −3.673 (12.382) −3.475 (12.476)
Mean January temp. sender −11.031 (14.474) −11.167 (14.452)
Mean January temp. receiver −15.147 (13.609) −15.101 (13.713)
Population size sender 1.806 (20.264) 1.744 (20.244)
Population size receiver −35.532 (16.127) −35.282 (16.215)
Mean income sender 2.349 (11.613) 2.220 (11.583)
Mean income receiver −1.129 (10.652) −0.969 (10.735)
Distance 7.081 (11.917) 7.218 (11.970)
Dispersion 5.942 (0.029) 5.942 (0.029)
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nd associated standard errors for each method are shown on in
able 3.

Table 3 reveals that the Metropolis–Hastings and Gibbs pro-
edures provide comparable estimates for each of the modeled
redictors. This suggests that each method simulates from the same
istribution, as expected. Furthermore, these fitted GERGM reveals
hree interesting, perhaps expected, trends in the data: (i) there
as increased migration away from states with high unemploy-
ent, (ii) there was decreased migration to states with a large

opulation, and (iii) there was decreased migration to states with
igh unemployment. See Desmarais and Cranmer (2012) for a
ore detailed discussion of these results. We provide further esti-
ation diagnostics for the Metropolis–Hastings procedure in the
ppendix.

.3. Non-degenerate specifications of the two-star model
In our simulation study, we consider fitting a GERGM to a
irected and weighted variant of the two-star model. Consider an
dge configuration x ∈ [0, 1]m. We model the occurrence of x as a
unction of its edges and in-two-stars:

ig. 4. The mean value of the in-two-stars statistic and the edge density of one million si
rom −10 to 10. The mean values are shown for ˛ values of 0.10, 0.25, 0.50, 0.75, 0.90, an
orks 49 (2017) 37–47

fX (x, �, ˛) =
exp
(


EhE(x) + 
ITShITS(x, ˛)
)

C(
E, 
ITS)
, x ∈ [0, 1]m

hE(x) =
∑
i /= j

xij/m hITS(x, ˛) =

⎛
⎝∑

i

∑
j<k /= i

xjixki

⎞
⎠

˛

, (16)

where C(
E, 
ITS) is the normalizing constant that ensures fX(x, �)
integrates to one, hE(x) is the edge density of x, and hITS(x, 1) is the
in-two-star density of x. When ˛ = 1, model (16) is the directed and
weighted version of the two-star model considered in Handcock
et al. (2003). Model (16) is closely related to the triangle model from
Jonasson (1999), Häggström and Jonasson (1999) and the widely
used Ising model for lattice processes. We will refer to model (16)
as the weighted in-two-stars model.

The unweighted two-star model is a well-known example that
suffers from likelihood degeneracy (see Handcock et al. (2003) or
Snijders et al. (2006) for instance). In this simulation study, we
empirically analyze model (16) following a similar study as that
described in Snijders et al. (2006). We find that, surprisingly, the
weighted in-two-stars model does not demonstrate the typical
signs of degeneracy. We now describe the simulation study and
our findings.

We first fix the edge density parameter 
E at −2 and a value of
˛ between 0 and 1. We then simulate one million size 10 networks
following model (16) for each integer value of 
ITS between −10
and 10 using the MH sampler. We calculate the mean edge density
and the mean in-two-stars value from the million samples at each
value of 
ITS. We repeat this procedure for ˛ values of 0.10, 0.25,
0.50, 0.75, 0.90, and 1. The results are reported in Fig. 4.

We see from Fig. 4 that for ˛ = 1, there is a large jump in
the value of the in-two-stars and edge density statistics between

ITS = 0 and 
ITS = 1. As ˛ decreases, the relative magnitude of this
jump decreases and the statistics’ curves are relatively smooth over
changes in 
ITS. When ˛ is too small (≤0.50), the in-two-stars statis-
tic value approaches one and the edge density only changes slightly
across values of 
ITS. The jump phenomenon was also witnessed for

binary networks in the two-stars model in Snijders et al. (2006),
where it was observed that this model specification was most prone
to degeneracy issues. As a consequence, one may expect the empir-
ical distribution of the in-two-stars and edge-density statistics in

mulated networks of the in-two-stars model with 
E =−2 and integer values of 
ITS

d 1.
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ig. 5. The empirical (scaled) frequency distribution of the edge density and the in
ne million networks were simulated and the values for each statistic is shown ove

he neighborhood of 
ITS = 0 and 
ITS = 1 to be bimodal at large values
f ˛.

To investigate whether this is the case, we performed a more
ne grained grid search for the value of 
ITS at which the edge
ensity of the network changed the most, for each value of ˛. We
ound that, for example, when ˛ = 0.5, the steepest change in the
dge density occurred at approximately 
ITS = 0.55. Similarly, for
= 0.75 and ˛ = 1, the steepest changes in the edge density occurred

t approximately 
ITS = 0.65 and 
ITS = 0.75, respectively. We show
he empirical distribution for both of the statistics for ˛ values of
.50, 0.75, and 1.00 at the values of 
ITS given above, in Fig. 5. Fig. 5
uggests that these distributions are not bimodal for these values of
, including ˛ = 1. We also evaluated these distributions for all other
alues of 
ITS in our simulations and found similar results. Further-
ore, these results are not sensitive to the value of 
E, as it serves

nly to shift the curves depicted in Fig. 4 left or right. These find-
ngs suggest that the weighted in-two-stars does not suffer from
he same degeneracy issues as its binary counterpart.

In summary, this simulation study provides insights into two
mportant features of the GERGM specification of the two-stars

odel. First, the weighted in-two-stars models does not appear
o suffer from degeneracy at any value of ˛. This surprising result is
ontrary to the well-known unweighted two-stars model. This sim-
lation also gives some intuition as to how to choose the tuning
arameter ˛. Small values of ˛ (≤0.50) dampened the effect of
he in-two-stars statistic too drastically and are therefore not sug-
ested. We encourage using values of ˛ between 0.5 and 0.9 as
hese values lead to decreased sensitivity of the GERGM model to
arameter changes.
. Discussion

We have proposed, explicated, and demonstrated several
dvances in the statistical modeling of weighted networks by
tars value for the in-two-stars model at 
ITS = {0.55, 0.65, 0.75} (from left to right).
etworks.

substantially increasing the utility of the GERGM. These extensions
to the GERGM, taken together, represent a significant increase in the
model’s capabilities, such that it is now possible to use nearly any
model specification for inference on continuous-valued weighted
graphs.

First, we have proposed and implemented a Metropolis–
Hastings algorithm for fitting GERGMs. In the original develop-
ment of the GERGM, Desmarais and Cranmer (2012) proposed
a Gibbs sampling strategy to estimate the model. However, this
approach is limited by the fact that fairly strict constraints are
placed on the set of network statistics that can be used in the model.
Our Metropolis–Hastings procedure relaxes these restrictions and
allows one to use the full set of possible specifications for the model.

Second, we have proposed an approach to dampening the
extreme values often produced by subgraph sums and thus avoid-
ing model degeneracy. This dampening technique, because it is
critical in avoiding degenerate model specifications in the GERGM,
allows analysts to specify a practical and diverse set of endoge-
nous effects as part of the network data generating process. Though
this may seem a simple extension to the means by which statistics
are computed on the network, this weighting strategy is important
because degeneracy is a major obstacle to estimation of inferential
models on real-world networks.

We consider two approaches to network statistic dampening
– one in which subgraph-specific sums are raised to a fractional
exponent (i.e., ˛-inside dampening), and a stronger approach that
involves raising the sum over all subgraphs to a fractional exponent
(i.e., ˛-outside dampening). It is important to re-iterate that, while
the ˛-inside approach conforms to the local dependence that is typ-
ical to ERGM formulations, the ˛-outside approach induces global

dependence in that each tie variable depends to some degree on
the value of every other tie variable in the network. We see from
Eq. (15) that the ˛-outside formulation exhibits a form of depend-
ence similar to the ˛-inside formulation in that high edge values
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re more likely if they contribute to local configurations that are
hemselves high and associated with positive parameter values.
owever, the ˛-outside formulation exhibits an additional form of
ependence in that the likelihood of high edge values embedded

n high value configurations decreases as the global sum over the
espective configuration type increases. This global dampening in
he ˛-outside model is inversely related to the value of ˛. Though
he ˛-inside and ˛-outside formulations may both be considered in
fforts to avoid degeneracy, we note that researchers should also
onsider how the choice between these two formulations affects
he interpretation of results.

Though we have presented important innovations here, much
ork remains. Specifically, we have just scratched the surface when

t comes to model selection and specification for GERGMs. First,
oth in Desmarais and Cranmer (2012) and in the current study, the
tatistics used to specify the GERGM have represented straightfor-
ard functional adaptations of the statistics commonly used for

inary ERGMs. Future research should consider suites of statis-
ics that are applicable to the special case of weighted networks.
urthermore, our approach to weighting the subgraph products
equires a choice of ˛ that will rarely be theoretically informed. In
ur simulation study, we analyzed the effects of ˛ on the sensitivity
f the two-stars model and found encouraging results for ˛ ∈ (0.5,
]. In principle, one could use an alternative data-driven approach
hat chooses ˛ based on goodness of fit summaries. We plan to
nvestigate this more fully in future work. Finally, the results in
he simulation study gave empirical evidence in one well-studied

odel that the GERGM does not suffer from degeneracy like its
inary ERGM counterpart. We aim to theoretically formalize these
ndings in future work.

ppendix

: Pseudo-code for MCMC maximum likelihood estimation of the
ERGM

lgorithm 1. GERGM MCMCMLE
orks 49 (2017) 37–47

Algorithm 2. ESTIMATE THETA

Algorithm 3. METROPOLIS HASTINGS UPDATE

B: GERGM fit diagnostics

To evaluate convergence of the Metropolis–Hastings procedure

on the international lending network and the U.S. Migration data,
we evaluate the trace plot for the network density of the simulated
networks over 800,000 simulated networks. We show this plot in
Fig. 6. For the U.S. Migration data, we simulated 100,000 networks



J.D. Wilson et al. / Social Netw

Fig. 6. International lending network trace plot for the network density of the sim-
ulated networks over 800,000 simulations from Metropolis–Hastings.
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ig. 7. U.S. migration network trace plot for the network density of the simulated
etworks from 100,000 simulations from Metropolis–Hastings.

ith 10,000 burn-in. The modeled statistics, as well as the MCMC
raceplot for the network density for this data are shown in Fig. 7.
isual inspection as well as the Geweke convergence test statistic
uggests that the sampler has converged.
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