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Abstract

In many applications, it is of interest to identify anomalous behavior within a
dynamic interacting system. Such anomalous interactions are reflected by struc-
tural changes in the network representation of the system. We propose and
investigate the use of the degree corrected stochastic block model (DCSBM)
to model and monitor dynamic networks that undergo a significant structural
change. We apply statistical process monitoring techniques to the estimated
parameters of the DCSBM to identify significant structural changes in the net-
work. We apply our surveillance strategy to a dynamic US Senate covoting
network. We detect significant changes in the political network that reflect both
times of cohesion and times of polarization among Republican and Democratic
party members. Our analysis demonstrates that the DCSBM monitoring proce-
dure effectively detects local and global structural changes in complex networks,
providing useful insights into the modeled system. The DCSBM approach is
an example of a general framework that combines parametric random graph
models and statistical process monitoring techniques for network surveillance.
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1 INTRODUCTION

Time-varying, or dynamic, networks are often used to model the interactions of a group of actors through time. In many
applications, it is of interest to identify anomalous behavior among the actors within a dynamic network. For example,
organizers of the Arab Spring uprisings in 2011 tended to interact with one another more frequently on Facebook at the
onset of the uprisings.1 Similarly, central players in the Enron scandal exchanged an increased number of emails prior to
fraud investigations.2 In both of these examples, anomalous activity occurred among the interactions of the actors of the
system; as a result, these changes can be observed in the network describing the actors.

The monitoring of dynamic networks for anomalous changes through time is known as network surveillance. Network
surveillance techniques have been successfully applied in a number of settings, including the detection of fraud in large
online networks,3-5 the identification of central players in terrorist groups,6-8 and the detection of spammers in online
social networks.9 As recent applications of network surveillance have grown in complexity, there has been an increased
interest in developing new scalable network surveillance techniques, especially in the area of social network monitor-
ing (see previous studies10-13 for recent reviews). A useful area to help guide network surveillance is statistical process
monitoring (SPM). In general, statistical process monitoring provides a methodology for the real-time surveillance of any
characteristic of interest. The philosophy behind SPM is that anomalous behavior in such a characteristic can be identi-
fied by distinguishing unusual variation from typical variation in an ordered sequence of observations. Stemming from
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applications in industrial manufacturing and public health surveillance, SPM has a rich history and many methods have
been developed (see previous studies14-16 for reviews of methods and applications).

We propose a network surveillance framework that applies statistical process monitoring to the estimated parameters
of a dynamic random graph model. We propose the use of a dynamic version of the degree corrected stochastic block
model (DCSBM) from Karrer and Newman.17 The DCSBM yields a probability distribution on the family of undirected
graphs with discrete-valued edge weights. Importantly, the DCSBM dictates the propensity of connection between actors
and captures two important aspects of social networks: heterogeneous connectivity and community structure. As many
monitoring applications involve social communications, eg, the terrorist networks in other works,3,5 the DCSBM can be
used to simulate realistic networks.

The DCSBM is characterized by parameters for which closed-form maximum likelihood estimators (MLEs) can be
readily derived. We use statistical process monitoring to identify time points at which the parameter estimates of the
DCSBM change significantly. Here, we investigate two widely studied SPM methods for surveillance, the Shewhart control
chart for individual observations and the exponentially weighted moving average (EWMA) control chart.18 We apply our
surveillance strategy to the dynamic covoting network of the US Senate, which models the voting behavior of US Senators
from 1867 to 2015. We find that our surveillance strategy is able to identify eras of cohesion and division among the
Republican and Democrat parties, and that these changes coincide with significant political events in US history. These
analyses, as well as our simulation study, reveal that our network surveillance method with the DCSBM is an effective
monitoring strategy for dynamic networks that undergo change.

Our proposed monitoring strategy establishes one practically useful technique among a general family of methods for
surveillance. Our framework relies on two components: a parametric dynamic random graph model for modeling the
features of the graph and control charts from statistical process monitoring for the detection of significant change in the
model's parameters. Here, we consider the DCSBM random graph model and the Shewhart and EWMA control charts for
surveillance. However, this same framework can be used for any parametric random graph model and any control chart
of the user's choice. For example, one could investigate dynamic exponential random graph models like those described
by other works19,20 or dynamic latent space models such as that introduced in Sewell and Chen.21 Furthermore, one
could further investigate the use of other univariate SPM methods such as cumulative sum (CUSUM) control charts or
control charts for attributes and perhaps multivariate SPM approaches such as Hotelling T2 or multivariate EWMA control
charts.18 Our contribution serves as a first step in understanding the utility of this framework.

2 THE NETWORK SURVEILLANCE PROBLEM

Consider a collection of actors or individuals [n] = {1, … ,n}, whose interactions have been recorded at times t = 1, … ,T.
In many applications, it is convenient to represent the interactions of [n] at time t by an undirected network Gt = ([n],Wt).
Here, the actors [n] are treated as nodes or vertices in the graph, and Wt = {wu,v(t) ∶ u, v ∈ [n]} is the set of edge weights,
where wu,v(t) quantifies the strength of the relationship between nodes u and v at time t. A dynamic network model of
the individuals [n] over time t = 1, … ,m is the ordered sequence of undirected graphs G(n,T) = {G1, … ,GT}. The
edge weight wu,v(t) may, for example, represent the number of communications between individuals u and v at time t in
a dynamic social network, or the number of interactions between two genes u and v at time t in a biological network.22

Note that an unweighted graph, where each edge weight is binary, is a special case where edges indicate the presence or
absence of a specified level of connection between nodes u and v at time t.

The goal of network surveillance is to prospectively monitor the interactions of [n] so as to detect abnormal behavior
among the actors. To perform surveillance, one generally first specifies a statistic St, or more generally a vector of statistics
St, that provides some local or global summary of the network Gt based on the types of anomalies to be detected. The
choice of St is flexible. In the simplest case, one can choose a statistic that summarizes some topological aspect of Gt,
such as the connectivity of each node, the clustering of nodes, or the average shortest distance between each pair of
nodes.23-26 In many cases, the choice of statistic is driven by the application, such as the Enron email network analysis
in.26 Alternatively, one can model Gt by a family of probability distributions governed by parameters 𝚿 and specify St as
an estimator associated with 𝚿. We discuss such model-based approaches in more detail in Section 3.

Once a statistic St has been chosen, SPM is used to distinguish unusual behavior from typical behavior. In network
surveillance, this corresponds to the real-time identification of unusually large or small values of St. For this purpose, we
use a control chart—a time series plot of St constructed with control limits that indicate boundaries of typical behavior.
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An observed value of St is considered anomalous if it deviates significantly from what previous observations suggest is
typical. Monitoring consists of two phases, Phases I and II, which are described below.

a. Phase I: The statistic St is calculated for the first m < T graphs. The mean 𝜇 and variance 𝜎2 of St are estimated using
the m sampled statistics. A tolerance region (𝜇, 𝜎2) is constructed on the basis of the estimated values for 𝜇 and 𝜎2.
The upper and lower bounds of this region are referred to as upper and lower control limits, respectively. Variation
within these limits defines typical behavior.

b. Phase II: For each new graph Gt, with t > m, St is calculated, and Gt is deemed “typical” if St ∈ (𝜇, 𝜎2) and deemed
“anomalous” otherwise. When an observed value of St exceeds these limits, we say that the control chart has signalled;
this serves as an indication that a structural change has occurred.

As the first m networks are used to determine the tolerance region (𝜇, 𝜎2), successful monitoring in Phase II requires
that the data in Phase I provide an accurate representation of typical variation; if 𝜇 and 𝜎2 are not accurately estimated,
then the control limits defined by (𝜇, 𝜎2) are unlikely to be applicable beyond the Phase I time frame. Ideally, the control
limits will balance the need for a control chart that is sensitive enough to detect important changes, while not signalling too
frequently when no anomaly is present and creating an excessive number of false alarms. Jones-Farmer et al27 discussed
the importance of effectively collecting and analyzing baseline data during Phase I. If the network being monitored is
expected to evolve over time, then we recommend moving window approaches as opposed to a fixed Phase I sample as
considered in other studies.28,29

The performance of a surveillance technique depends also on the definition of (𝜇, 𝜎2), which largely depends on the
goal of the control chart and the type of data being plotted. Abnormal activity in Phase II networks may be brief—where
as few as one or two anomalous graphs are observed, or it may persist over an extended period of time. To detect sud-
den large changes, a standard Shewhart control chart is typically used.18 However, if sensitivity to sustained small and
medium-sized changes is of interest, one might consider using an exponentially weighted moving average (EWMA)
control chart. See other studies30,31 for recent advances in EWMA control chart techniques.

In practice, the choice of statistic St and type of control chart will depend on the types of network changes one wishes
to detect. For instance, if one seeks to detect a global change in the network (where there is an overall change in the
structure, eg, communications on average increase or decrease over the entire network), the choice of statistic and chart
will be different than if one wishes to detect a local change in the network (where there is a change in structure among
some subgraph of the network, eg, communications on average increase or decrease within a particular community). In
Section 7, we use simulation to evaluate the ability of our proposed methodology to detect a variety of different local and
global network changes.

3 RELATED WORK

There are other model-based approaches for network surveillance that have been recently developed. Azarnoush et al28

proposed a longitudinal logistic model that describes the (binary) occurrence of an edge at time t as a function of
time-varying edge attributes in the sequence of networks G([n],T). A likelihood ratio test is used to monitor changes
before and after each time point. Peel and Clauset32 developed a generalized hierarchical random graph model (GHRG) to
model G([n],T). To detect anomalies, the authors used the GHRG as a null model to compare observed graphs in G([n],T)
via a Bayes factor. At each time t, Bayesian posterior inference via Markov Chain Monte Carlo is used to fit the GHRG to
the graph Gt. Anomalies are detected using a sliding window approach on the Bayes factor that compares observed graphs
to the GHRG fit for previous observations.

In Heard et al,33 the authors considered monitoring changes in communication volume between subgroups of tar-
geted people over time. Their approach evaluates pairwise communication counts and determines whether these have
significantly increased using a P value. The P value assesses the deviation of the communication rate at time t and what
is considered normal behavior under conjugate Bayesian models describing the discrete-valued time series of commu-
nications up to time t. While their focus is detecting changes on the entire network, our approach considers detecting
anomalies for members of a community within a dynamic network. Sparks and Wilson31 considered the monitoring of
abrupt changes among an unknown set of actors in a dynamic network. They establish an EWMA strategy for detecting
such changes, which incorporates the uncertainty of the type and size of the subset of actors undergoing a change.

The change point approach developed in Barnett and Onnela34 seeks to identify significant changes in correlation
networks, where the correlation network at time t represents the correlation of some underlying multivariate stochastic
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process at that time. For each t, the Frobenius distance F(t, t−) between the correlation network at time t and the average
of the correlation networks from times 1, … , t − 1 is calculated. The authors then generate a sample of “null” networks
by bootstrapping a sample of t networks where no change is introduced. There are a number of sequential change point
methodologies that have been developed for networks recently (see, for example, Zambon et al35). Chen36 introduced
a nonparametric method for detecting change via a k nearest neighbor approach. Roy et al37 considered change point
analysis in high-dimensional Markov fields, and Keshavarz et al38 extended this work to Gaussian graphical models.

Recent work has begun to focus on the problem of network monitoring with the use of control charts. Yu et al39 extended
the present work to monitor varying degree propensity coefficients. Hosseini and Noorossana40 considered the application
of the CUSUM and EWMA control charts on the average and standard deviation of the degree of each node in an observed
network. Perry41 developed an EWMA control chart to monitor the hierarchy present in directed networks. Both Zhao
et al29 and Noorossana42 analyzed the use of control charts for dynamic anomaly detection in social networks.

4 THE DEGREE CORRECTED STOCHASTIC BLOCK MODEL

Let G = ([n],W) be an undirected network that represents the interactions of actors [n]. The DCSBM models two
important features of real networks: (a) community structure and (b) degree heterogeneity, which we now briefly discuss.

Empirically, the nodes of a network G can often be divided into k ≥ 1 disjoint vertex sets as [n] = V1∪V2 … ∪Vk in such
a way that the density of edges within each vertex set Vj ⊆ [n] is substantially greater than the density between differing
sets. The vertex sets are commonly referred to as communities. In many applications, the communities of a network
provide structural or functional insights about the modeled complex system. For example, recently community structure
has been used to help develop hypotheses about gene interactions and antibiotic resistance,43 and about the dynamics of
social interactions using cell phone data.44 The substantial relevance of communities in network systems has lead to a
large and growing literature about community structure and the identification of statistically meaningful communities
(see other studies45,46 for reviews).

In addition to naturally dividing into densely connected communities, actors in a network tend to have a highly variable
propensity to make connections. In these situations, the degree distribution of the nodes are variable, where the degree du
of a node u ∈ [n] is the total number of interactions in which u takes part, namely, du =

∑
x∈[n]wu,x.

The scale-free family of networks is one common family of networks with heterogenous degrees. In scale-free networks,
the degree distribution approximately follows a power law.47,48 Scale-free networks commonly arise in economic, social,
and ecological networks (eg, Kasthurirathna and Piraveenan49 studied a recent example).

4.1 The model
Let  represent the family of all undirected networks with n nodes and k disjoint communities. The DCSBM yields a prob-
ability distribution P(·) = P(·|𝜽,𝛑,P) on  that is characterized by (a) nonnegative degree parameters 𝜽 = (𝜃1, … , 𝜃n),
which reflect the tendency of the nodes to connect, (b) containment probabilities 𝝅 = (𝜋1, … , 𝜋k) that satisfy 𝜋r > 0 and∑

r∈[k]𝜋r = 1, where 𝜋r specifies the probability of a node belonging to community r, and (c) the k × k symmetric connec-
tivity matrix P = (Pr,s), where entries Pr,s > 0 represent the propensity of connection between nodes in communities r
and s.

Let G ∈  be a random graph with n nodes and k communities generated under P. Then G can be obtained by a simple
generative procedure, described as follows. First, parameters 𝜽, 𝝅, and P are prespecified and fixed. These are chosen to
control the degree variability, relative size of communities, and connection propensity between and within communities,
respectively. Nodes are randomly assigned community labels c = (c1, … , cn) according to the multinomial draws:

cu
i.i.d∼ Multinomial(1,𝛑). (1)

Given 𝜽, c, and P, edge weights {wu,v ∶ u, v ∈ [n]} are assigned according to independent Poisson draws, where

E[wu,v|c,𝜽,P] = 𝜃u𝜃vPcu,cv . (2)

The graph G is then defined as the network with nodes [n], community labels c, and edge weights w = {wu,v ∶ u, v ∈ [n]}
resulting from (1) and (2). For an observed network with community labels c and edge weights w, we define nr as the
number of vertices in community r. Further define mr,s =

∑
u,vwu,vI(cu = r, cv = s) as the total weight of edges between



WILSON ET AL. 1367

community r and s (twice the weight of edges when r = s). It follows by combining (1) and (2) that the joint distribution of
the random graph G and community labels c is described by the joint probability mass function given by, when ignoring
constants,

P(G, c|𝜽,𝛑,P) ∝
∏
r∈[k]

𝜋
nr
r

∏
u∈[n]

𝜃
du
u

∏
u<v∈[n]

1
wu,v!

×
∏

r,s∈[k]
P

mr,s
2

r,s e−
nr nsPr,s

2 .

(3)

The distribution P(G|𝜽,𝛑,P) is obtained by summing the joint probability in (3) over all possible realizations of c. We
note that the model in (3) is not identifiable without some constraint on 𝜽 since the likelihood is unaffected by certain
opposing magnitude shifts in 𝜽 and P.50 To ensure that the model is identifiable, we require that the sum of 𝜃u in the same
community equal the number nodes in that community, namely,

∑
u∶cu=r

𝜃u = nr, (4)

for all r = 1, … , k. For simulation, it is often of interest to specify the community labels c deterministically rather
than randomly as in (1). To distinguish these assignment strategies, we will write P(·|𝜽, c,P) to represent the probability
distribution of the DCSBM when the community labels are prespecified a priori.

4.2 Simulating a DCSBM with a structural change
We are interested in simulating an ordered sequence of graphs on the vertex set [n] that demonstrate various types of
significant structural change. The DCSBM P(·|𝜽, c,P) provides a flexible way to model change in a sequence of random
graphs. To model a sequence of graphs with a significant structural change, we generate an ordered sequence of random
graphs G(n,T) = {G1, …Gt∗ , … ,GT} according to

Gt ∼
{

P(G|𝜽0, c0,P0), t < t∗
P(G|𝜽∗, c∗,P∗) t ≥ t∗ . (5)

By simulating G(n,T) as in (5), we introduce a structural change in the graph at time t∗ that persists across the remaining
networks in the sequence. In this way, G1 = {G1, … ,Gt∗−1} are simulated as “typical” graphs, whereas G2 = {Gt∗ , … ,GT}
are “anomalous” graphs. The goal of a surveillance method then is to signal as quickly as possible following the time point
of change t∗. For network monitoring simulations, we require t∗ > m so that the change occurs after Phase I. We note
that in principle one can simulate networks with multiple changes, as well as networks with changes that affect a small
number of networks.

To simulate a network G(n,T) according to (5), one first chooses 𝜽0, c0,P0 and 𝜽∗, c∗, and P∗ either stochastically or
deterministically while maintaining constraints on each parameter. In particular, P0 and P∗ must contain entries on the
unit interval, c0 and c∗ must be positive discrete-valued labels {1, … , k}, and 𝜽0 and 𝜽∗ must satisfy (4) to ensure iden-
tifiability. For each t ∈ {1, … ,T}, let (𝜃u, cu,Pu,v) be entries of (𝜽0, c0,P0) if t < t∗ or (𝜽∗, c∗,P∗) otherwise. The edges of
graph Gt is generated as independent Poisson draws

wu,v ∼ Poisson
(
𝜃u 𝜃v Pcu,cv

)
,

and each graph is generated independently.
The changes 𝜽0 → 𝜽∗, c0 → c∗, and P0 → P∗ each reflect a different type of structural change in the simulated dynamic

network. By altering the parameters that dictate the DCSBM from time t∗ − 1 to t∗, we are able to model several types of
structural change among the actors [n] in G(n,T), including the following:

a. Change in rates of interaction: In general, one can introduce a mean shift in interaction rate in community r by speci-
fying P∗

r,r ≠ P0
r,r. Doing so will also affect the variance of the interaction rate in the community. In particular, the mean

and variance of the number of interactions in community r will decrease at time t∗ when P∗
r,r < P0

r,r, and increase when
P∗

r,r > P0
r,r. One can introduce a change in variance of the interaction rate of vertices locally or globally by specifying

𝜽∗
≠ 𝜽0.
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b. Communication outbreaks: In network surveillance, one is often interested in identifying “communication outbreaks”
among the members of some subgraph 𝛺 ⊆ [n] in the network. A communication outbreak corresponds to an increase
in the average number of interactions among the members of 𝛺. Using the DCSBM, we can model communication
outbreaks among any number of communities in the network. For example, a communication outbreak among the
members of community j is modeled by specifying P∗

r,r > P0
r,r as the mean and variance of the interactions in community

r will increase at time t∗. We can model a global communication outbreak by specifying P∗
r,s > P0

r,s for all r, s ∈ [k].
c. Change in community structure: A change in community structure of a social network can signify an important transi-

tion in the modeled system. For example, in the political voting network we consider in Section 6, the network structure
associated with the members of the US Senate significantly changes at times of extreme polarization of the Republi-
cans and Democrats.5152 describe six general types of community structure changes in a network, including growth,
shrinkage, birth, death, the merging of two communities, or the splitting of a single community into two or more com-
munities. In general, each of these types of changes can be implemented at time t∗ by specifying new community labels
c∗ ≠ c0.

5 MONITORING THE DCSBM

Suppose that we observe a dynamic graph sequence G(n,T) = {G1, … ,GT} that is generated under the dynamic DCSBM
according to (5). Our goal is to identify as quickly as possible any change in the distribution that generated G(n,T). To
detect such changes, we propose a surveillance strategy that proceeds in two steps. First, the dynamic DCSBM is fitted to
G(n,T) using maximum likelihood estimation. Next, control charts are applied to functions of these maximum likelihood
estimators to detect changes. Here, we apply the Shewhart and EWMA control charts for individuals. We first describe
estimation of the DCSBM and then our monitoring strategy.

5.1 Fitting the DCSBM
5.1.1 Estimation of communities
The estimation of the community labels c, otherwise known as community detection, is known to be an NP hard problem;
as a result one must estimate the labels using an approximate algorithm. Many detection methods have been developed for
weighted and unweighted networks (see other studies45,46 for reviews). The spectral clustering algorithm53 is particularly
well suited for this setting due to its theoretical guarantees,54,55 which we now briefly mention.

Let m represent the number of Phase I graphs in G(n,T), and assume that m < t∗. Define the average Phase I graph by
Ḡ = 1

m

∑m
𝑗=1 G𝑗 , where the sum of two graphs G1 = ([n],W1) and G2 = ([n],W2) is the graph with node set [n] and edge

weights W1 + W2. If the probability matrix P has no identical rows, then spectral clustering of the graph Ḡ will provide
asymptotically consistent community label estimates ĉ, as m → ∞. In other words, if the number of Phase I graphs is large
enough, we obtain consistent estimators for the community structure for the sequence of graphs before t∗. This fact is a
consequence of the main result presented in Han et al.54 In practice, one should use as many Phase I graphs as possible,
but the choice of m depends on the judgement of the practitioner and the availability of data.

For monitoring purposes, we suggest using the regularized spectral method from Qin and Rohe55 on the Phase I graphs
in the sequence and monitoring the parameter estimates conditional on the estimated community labels for the entire
sequence of graphs. As we will see, in many cases changes in the community structure will be reflected by changes in the
parameter estimates describing the DCSBM. Though we do not pursue it here, future work should investigate surveillance
of community labels themselves.

5.1.2 Maximum likelihood estimation of parameters
We now briefly summarize the maximum likelihood estimation of the parameters in the DCSBM, which was derived in
Yan et al.50 We assume that c is fixed for all t and is equal to the estimators ĉ obtained from spectral clustering described
above. From (3), we can show that the log likelihood of (𝜽,P) given an observed graph G = ([n],W) and community labels
is, when ignoring constants,

𝓁(𝜽,P|G, c) ∝
∑

u∈[n]
du log(𝜃u) +

1
2

∑
r,s∈[k]

(
mr,s log(Pr,s) − nrnsPr,s

)
. (6)
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Taking derivatives, it is readily shown from (6) that the maximum likelihood estimator (MLE) for each parameter has
a closed-form solution. For u ∈ [n] and r, s ∈ [k], the maximum likelihood estimators are given by

�̂�u = du

n−1
r

∑
w∶cw=cu

dw
, P̂r,s =

mr,s

nrns
. (7)

5.2 Monitoring strategy
To develop a monitoring strategy that detects local and global changes in a network, we first suppose that the number of
communities, k, is fixed through time. The community labels at each time point, ct, is first estimated. Given ct, we directly
monitor the MLE P̂, where at each time t we estimate the

(
k
2

)
unique entries of P̂ for graph Gt. This statistic reflects the

overall connection propensity among communities. To monitor for changes in 𝜽, one could in principle monitor each
statistic �̂�u separately; however, this can lead to a large number of control charts. Instead, for community r = 1, … , k, we
monitor the sample standard deviation of the propensity estimates in each community {�̂�𝑗 ∶ c𝑗 = r}, denoted by sr. Our
choice in using the standard deviation is motivated by the fact that subject to (4), the expectation of {𝜃u ∶ cu = r} is fixed
to be exactly 1. Thus, we decide instead to monitor the variability in overall connection within community r.

We note that it is possible for sr to remain fixed while the propensity parameters change. For example, in yet to be
published work39 define a 𝜃 value for each individual within a community, and treat these propensities as fixed param-
eters to be modeled and monitored. Their focus is the detection of change in individual connection propensities within
communities.

In summary, our surveillance plan monitors
(

k
2

)
+ k statistics {P̂q,r, sq ∶ q ≤ r ∈ [k]} through time. We expect these

statistics to capture community structure changes as well, since in this scenario the mean connectivity between pairs of
nodes in the network is also likely to change. We note that we monitor the parameters with separate charts because the
maximum likelihood estimators given by (7) are asymptotically independent. For small networks, it may be beneficial to
apply a multivariate control chart; however, in our applications, we apply separate control charts for ease of interpretation.
Furthermore, we note that since we monitor characteristics of communities over time and not the nodes themselves, we
can directly apply our monitoring strategy to a sequence of networks with a varying number of nodes.

5.2.1 Shewhart control chart
For each of the parameters that we estimate, we use Shewhart and EWMA control charts to determine what values of
these parameters indicate a significant change in the network. Let St be a statistic at time t, and let m be the number of
Phase I networks. For t > m, the Shewhart control chart for individual outcomes signals a change in the statistic if St lies
outside of the control limits �̂�±3�̂�, where �̂� is the sample mean of the m Phase I observations, and �̂� is the moving range
estimate for the standard deviation of these m observations given by

�̂� =
√
𝜋

2(m − 1)

m∑
𝑗=2

|S𝑗 − S𝑗−1|.

Note that the constant 2∕
√
𝜋 is equivalent to d2, the normalization constant used in the control chart literature.

5.2.2 EWMA control chart
Whereas the Shewhart control chart is designed to detect sudden large changes in St, the width of the ±3�̂� limits and the
use of only the most recent statistic value results in reduced sensitivity to persistent changes that are small to medium in
size. When detection of these sorts of changes is of interest the EWMA control chart is to be preferred over the Shewhart
control chart.

Instead of plotting the observed values of St directly, for t > m the EWMA control chart is a time series plot of Zt, the
exponentially weighted moving average of St

Zt = 𝜆St + (1 − 𝜆)Zt−1,
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where Z0 = �̂� is a common choice for the starting value of the moving average and 𝜆 (0 < 𝜆 ≤ 1) is a smoothing constant.
Through empirical investigation, Crowder56 provides guidance on the choice of 𝜆 that optimizes the performance of the
EWMA control chart. Montgomery18 suggests that values of 𝜆 in the interval 0.05 ≤ 𝜆 ≤ 0.25 work well in practice with
𝜆 = 0.2 being a popular choice. The control limits of the EWMA control chart are given by

�̂�±3�̂�
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2t].

Note that as t increases, ie, as the number of Phase II observations increases, these control limits approach the steady-state
values given by

�̂�±3�̂�
√

𝜆

(2 − 𝜆)
. (8)

If Zt lies outside these control limits, it signals that a small and persistent change has occurred. Because the current
observation St is de-emphasized in this moving average, the EWMA control chart will not signal sudden large changes
as quickly as a Shewhart control chart. Thus the nature of change one wishes to detect should dictate which control
chart is used. In practice, it is sensible to simultaneously monitor St using both approaches. We explore the utility of both
the Shewhart and EWMA control charts when applied to the U.S. Senate covoting network in Section 6. We also use
simulation to investigate the detection properties of the Shewhart control chart more generally, in Section 7.

6 APPLICATION TO THE US SENATE VOTING NETWORK

We now use the DCSBM surveillance procedure to investigate the dynamic relationship between Republican and Demo-
crat Senators in the US Congress. We analyzed the covoting network of the US Senate from 1867 (Congress 40) to 2015
(Congress 113). This network was first analyzed in Moody and Mucha51 and has been since investigated in Roy et al.37 In
Moody and Mucha,51 the modularity, or extent of divisiveness, of the network was calculated over time, and it was found
that generally Republicans and Democrats have become more polarized over time. The dynamic DCSBM framework pro-
vides a means to formally model this network and test for changes in the community structure and voting patterns among
party members.

We generated a dynamic network to model the covoting patterns among US Senators in the following manner. We first
collected the roll call voting data for each Congress from http://voteview.com. This data set contains the voting decision
(either yay, nay, or abstain) of each Senator for every bill submitted to the Senate. For each Congress, we model the Senators
in that Congress as the collection of nodes. Binary edges are placed between two Senators if they vote concurrently (either
both yay or both nay) for at least 75% of the total number of bills on which either of them voted.

To analyze political polarization, we applied the DCSBM surveillance strategy with Shewhart and EWMA control charts
to this dynamic network. Since node labels across graphs are not registered, ie, nodes do not represent the same Senators
across time, estimating the community labels using the spectral clustering strategy mentioned in Section 5.1.1 is not
appropriate. As we are interested in understanding political polarization, we instead set the community labels at time t
according to the political affiliation of each Senator (1 for Democrat and 2 for Republican). We set the Phase I size to be
m = 25 and computed the Shewhart and EWMA control charts for the estimators {P̂q,r, sq ∶ q, r = 1, 2}. For the EWMA
chart, we calculated the control limits in (8) and set 𝜆 = 0.2. The Shewhart and EWMA control charts are shown in the
bottom of Figure 1.

The control charts in Figure 1 reveal three interesting and relevant features about the US Senate voting patterns. First,
both the Shewhart and EWMA control charts signal large values of P̂1,2 from Congress 91 (1969-1971) to Congress 94
(1975-1977). This finding suggests that Republicans and Democrats tended to vote concurrently more often than expected
during this period of time. Furthermore, the EWMA control chart signals large values of s1 during this time period. This
suggests that the voting propensity of the Democratic party during this time is significantly more variable than expected.
Interestingly, this time frame lies at the second half of the so-called “Rockefeller Republican” era, which lasted from 1960
to 1980. During this era, many Republican Senators had moderate views that reflected the ideals of the governor of New
York, Nelson Rockefeller.57,58 The Rockefeller Republicans were strong supporters of the civil rights movement, including
the Civil Rights Act of 1968, and held especially moderate fiscal views under the Presidency of Richard Nixon (93rd
Congress). Notably, this general cohesion among parties—marked by large values of P̂1,2 in the control charts—ended in

http://voteview.com
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FIGURE 1 Shewhart and EWMA control charts for the DCSBM coefficient estimates for the US Senate covoting network. Red dashed
lines represent the upper and lower control limits for each control chart. Red dots represent weeks that were signalled for that control chart.
Blue dots signify when the Democratic party held the majority in the Senate [Colour figure can be viewed at wileyonlinelibrary.com]

Congress 94. This Congress coincides with the end of Nelson Rockefeller's role as Vice President of the United States in
1977. To the best of our knowledge, this is the first work to identify this political era using Senatorial covoting data.

Next, the EWMA control charts for P̂1,1 and P̂2,2 signal large values at Congress 104. This suggests that the intraparty
covoting propensities for both the Democratic and Republican parties became exceedingly large at that time. This finding
supports the theory of recent polarization of the parties at the beginning of Bill Clinton's first term as President (Congress
103). According to Moody and Mucha,51 this time period marked an important transition at which conservative Democrats
and liberal Republicans joined majority-party coalitions in both Congress 103 (Democratic majority) and Congress 104
(Republican majority). This transition left the middle ground between parties empty, which may have lead to an enduring
polarization. These results also coincide with the findings of Roy et al.37 The Shewhart control chart did not as clearly
signal this change; however, in each of the charts, there is an increasing trend beginning in Congress 100.

Finally, the EWMA control charts for s1 and s2 signal a significantly small value of these statistics at Congress 105. This
suggests that the variability of total interaction of the Senators steadily and significantly become lower during this period.
This finding complements the polarization theory described above, and suggests that since Congress 105, each US Senator
tends to vote according to his or her party, regardless of the bill.

7 SIMULATION STUDY

In this section, we investigate the detection of structural changes in a network G(n,T) = {G1, … ,GT} generated under a
DCSBM with a structural change. We consider local and global changes in the network as parameterized by changes in P,
𝜽, and c at time t∗. In this study, we consider the Shewhart control chart for individuals; however, we expect the EWMA
control charts to behave similarly.

In Section 7.1, we first evaluate this monitoring strategy on a collection of illustrative examples to gain an intuition of the
DCSBM and the performance of the proposed methodology. In Section 7.2, we quantify the strengths and weaknesses of
our method using an analysis of average run lengths under a variety of simulated conditions. To evaluate the performance
of our detection strategy, we altered the network size and the magnitude of the change being introduced. This simulation
strategy can be readily used to assess the performance of any network surveillance method.

We note that this simulation study assumes that the community membership of each node is known and so we do
not use a community detection algorithm such as those described in Section 5.1.1 prior to surveillance. We make this
choice deliberately for the following reason. In practice, a user of the proposed methodology begins by identifying a
community partition with an algorithm of their choice. Then, trusting this partition is accurate, the user continues with
surveillance assuming community membership is known. In line with this, our simulation results provide information
about the expected performance of our methodology after community membership has been established. To investigate
the influence of community detection on the surveillance strategy is to evaluate the community detection algorithm
itself—which is not our focus. Thus, we provide useful insight for the realistic situation in which surveillance is performed
assuming community labels, whether assigned deterministically or determined algorithmically, are known.

http://wileyonlinelibrary.com
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7.1 Illustrative examples
We begin our simulation study by demonstrating the Shewhart control charts on a collection of six dynamic networks,
each of which reflects a different structural change at time t∗. We investigated changes in the mean and variance of
interaction rate, both locally and globally, as well as changes in community structure. For each simulation, we generated
a dynamic network according to (5) with n = 50 nodes, k = 2 equally sized communities, T = 50 time points, and a
change implemented at time t∗ = 30. We use the first m = 25 simulated networks for Phase I, and implemented the
Shewhart control chart for the statistics {P̂q,r, sq ∶ q, r = 1, 2} using the surveillance strategy described in Section 5.2. In
all six simulations, we generate 𝜽0 as random draws from a Uniform distribution where

𝜃0
u

i.i.d∼ U(1 − 𝛿0
cu
, 1 + 𝛿0

cu
),

and 𝛿r is a constant multiple of the standard deviation of the connection propensity among the nodes in community r.
Furthermore, we set

P0 =
(

0.2 0.1
0.1 0.2

)
, 𝛿0

1 = 𝛿0
2 = 0.5.

Control charts are shown for each simulation in Figure 2. Below, we describe the six simulated networks and the results
of our monitoring plan. To conserve space, we do not present charts for s2, and instead describe them qualitatively where
appropriate. The implemented changes for each simulation are described in Table 1.

Simulations 1-2: mean interaction rate changes In the first two simulations, we monitored changes in the mean inter-
action rates in the network. In simulation 1, we introduce a local mean interaction outbreak in community 1 by
setting P∗

1,1 = P0
1,1 + 𝜖 with 𝜖 = 0.10. The top of Figure 2 reveals that the control chart for P̂1,1 efficiently signals a

change at time 30, whereas, all other statistics remain in control over the entire time interval. In simulation 2, we
introduce a global mean interaction outbreak by increasing all entries of P by 𝜖 = 0.10. In this case, the probability
estimates P̂1,1, P̂1,2 and P̂2,2 all lead to a signal for a change at time 30, and s1 and s2 remain in control. (The chart
for s2 is not shown here.) We note that P̂1,2 appears to signal the most dramatic change. This is due to the fact that
the signal to noise ratio introduced by increasing the overall interaction rate in the network is highest for the inter
community interactions.

Simulations 3-4: variance of interaction rate changes Next, we monitored changes in the variation of the interaction
rate in the simulated network. In simulation 3, we increased 𝛿0

1 by 𝜏 = 0.25, which results in a change in the
variability of interaction in community 1. The top of Figure 2 reveals that this change is indeed signalled by the
s1 chart. We expect the reaction of the chart, and hence the signal delay, to depend on the magnitude of change.
We investigate this further in the next section. In simulation 4, we simulated a global change in 𝛅0 = (𝛿0

1 , 𝛿
0
2),

which increases the variability of interactions among all nodes. In this case, 𝛿0
1 and 𝛿0

2 were both increased by
𝜏 = 0.25. The bottom of Figure 2 reveals that s1 signals the change almost immediately. Although not shown here,
the control chart for s2 behaves similarly. Importantly, the connection probability estimates remain in control in
these simulations suggesting, as desired, that the mean interaction rate in the network did not change.

Simulations 5-6: change in community structure In simulations 5 and 6, we consider two common changes in com-
munity structure: merging and splitting of communities. In simulation 5, we simulated networks with two equally
sized communities up to time t∗ = 30. At time t∗, we then merged the two communities into one and set the con-
nection value to the average of the former connection probabilities, that is P∗ = 0.15. Structurally, this change
results in an increase of P0

1,2 by 0.05 and a decrease in P0
1,1 and P0

2,2 by 0.05. Our control charts from Figure 2 signal
and we see that the change is appropriately detected using P̂1,2. Although we witness a decrease in P̂1,1 and P̂2,2,

TABLE 1 A description of the changes introduced to the
dynamic DCSBMs in our simulation study

Sim. Change Description
1 P∗

1,1 = P0
1,1 + 𝜖 Local outbreak in community 1

2 P∗
i,𝑗 = P0

i,𝑗 + 𝜖 Global outbreak (i = 1, 2, j = 1, 2)
3 𝛿∗1 = 𝛿0

1 + 𝜏 Local variability increase in community 1
4 𝛿∗i = 𝛿0

i + 𝜏 Global variability increase (i = 1, 2)
5 c0 → c∗ Merge communities
6 c0 → c∗ Split community 1 into 2 communities
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FIGURE 2 Shewhart control charts for the dynamic networks generated for simulations 1-6. Red dashed lines indicate control limits in
Phase II [Colour figure can be viewed at wileyonlinelibrary.com]

the control chart does not signal a change immediately. Because this change is relatively small, we would expect
that it would be better detected by EWMA control charts for P̂1,1 and P̂2,2.

In simulation 6, we once again begin with two equally sized communities. At time t∗ = 30, we split community 1
into two communities of size 12 and 13, respectively. For the three communities after time t∗, we fixed P∗

i,i = 0.20 and

http://wileyonlinelibrary.com
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P∗
i,𝑗 = 0.10. Structurally such a change will be reflected by an overall decrease in P̂1,1. We see this behavior in the chart

in the bottom of Figure 2; however, the change was not identified until time t = 35, where P̂1,1 went below the control
limits. We expect that this type of change will be more readily detected in larger networks and in networks where the split
community is large. We investigate this further in the next section.

7.2 Average run length analysis
For each scenario described in Table 1, we evaluated our monitoring methodology by simulating the situation 1000 times.
On each of these 1000 simulated runs, we calculated the number of networks until the control chart detects a change,
ie, the run length, and we then estimate the average run length (ARL) from these 1000 simulations. Because 𝜇 and 𝜎 are
estimated from Phase I, there will be practitioner-to-practioner sampling differences in observed ARL values, which is
the basis for an ARL distribution. Thus, the average run lengths we report are estimates of the mean of this distribution,
which we refer to as the average ARL (AARL) as in Saleh et al.59 This AARL is the basis upon which different surveillance
methods can be compared. In what follows, we describe the performance of our proposed surveillance technique.

In each of the scenarios discussed below, we assume the same initial form of P and 𝜽 as discussed in the previous section,
with n = 100 nodes in each network. We investigated the performance of the method with m = 25, m = 50 and m = 1000
Phase I samples. In all cases, we implemented the appropriate change 25 time periods in Phase II and thereafter generated
as many networks as required to observe the first signal on each control chart. Here, we investigate the performance of
control charts for P̂1,1, P̂1,2, P̂2,2, and s which is a pooled estimate of the standard deviation of �̂� based on s1 and s2 since
we assume 𝛿1 = 𝛿2 in Phase I. Note that this restricts what we can detect well.

We found comparable performance of our surveillance technique under Phase I sizes of m = 25,m = 50 and m = 1000.
However, as Saleh et al59 indicate, it is unwise to guarantee specific ARL values when the control chart parameters are
estimated from small sample sizes. As such, we present the results of the m = 1000 case here and provide the results for the
m = 25 and m = 50 cases in the Supporting Information. Note that when m = 1000, we gain insight into the performance
of the methodology under favorable conditions (ie, when information about each statistic's distribution is ample).

Simulation 0: no change We begin by considering the performance of the methodology when no structural change
has occurred. Doing so allows us to quanitify the prevalence of false alarms, ie, when the control chart incorrectly
indicates a change has occurred. The AARLs associated with the control charts for s, P̂1,1, P̂1,2, and P̂2,2 are shown
in Table 2. Although there will be variation in in-control ARLs, the large AARL values shown in the Simulation
0 row are reassuring; they indicate that false alarms are not expected to occur until hundreds of “in-control”
networks have been observed. When structural changes have occurred, we expect much smaller AARLs to be
associated with at least one of the four control charts. We discuss these scenarios below.

Simulations 1-2: mean interaction rate changes We quantify the method's ability to detect local changes in P, specif-
ically in community 1, by adding 𝜖 = 0.01, 0.05, 0.10 to P0

1,1. As mentioned previously, such a change is expected
to be detected on the P̂1,1 control chart. The Simulation 1 AARLs in the P̂1,1 column of Table 2 indicate that this
is indeed the case; on average we expect the P̂1,1 control chart to detect such a change in roughly 10 networks
for moderate sized changes in P1,1, and roughly two networks for large changes. On the other hand, the large
AARL values for the other three statistics indicate that none of them is likely to detect this change, as desired.

We similarly quantify the method's ability to detect global changes in P by adding 𝜖 = 0.01, 0.05, 0.10 to each P0
i,𝑗 .

In this situation, we expect all entries of P̂ to signal a change. The Simulation 2 AARLs in the P̂1,1, P̂1,2, and P̂2,2
columns of Table 2 support this hypothesis. As expected, we see that the P̂1,2 control chart signals this change
fastest since 𝜖 is much larger relative to P1,2 than it is to P1,1 and P2,2.

Simulations 3-4: variance of interaction rate changes We introduced local changes in interaction variability among
the nodes in community 1 by adding 𝜏 = 0.05, 0.10, 0.25 to 𝛿0

1 , and we introduce global changes in interaction
variability among all nodes in the network by adding 𝜏 = 0.05, 0.10, 0.25 to both 𝛿0

1 and 𝛿0
2 . In both cases, we

expect the s control chart to signal this change. The AARLs in the Simulation 3 and Simulation 4 rows of Table 2
support this claim. In particular, we can expect this control chart to detect global changes more quickly than
local changes, and in both cases large changes will be detected more quickly than small changes.

Simulations 5-6: change in community structure Simulation 5 corresponds to the merging of communities. Since P1,2
is most affected by this change, we expect the P̂1,2 control chart to signal quickest. The AARLs in the Simulation
5 row of Table 2 support this intuition; while P̂1,1 and P̂2,2 tend to detect this change more quickly than s, the P̂1,2
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Sim. Change s P̂1,1 P̂1,2 P̂2,2

0 None 317.18 317.98 310.33 255.29
𝜖 = 0.01 294.80 134.00 413.70 332.4

1 P∗
1,1 = P0

1,1 + 𝜖 𝜖 = 0.05 284.90 9.87 257.27 207.70
𝜖 = 0.10 524.40 2.23 289.90 325.90
𝜖 = 0.01 498.80 140.90 64.65 142.30

2 P∗
i,𝑗 = P0

i,𝑗 + 𝜖 𝜖 = 0.05 211.10 9.48 1.71 12.17
𝜖 = 0.10 93.30 2.01 1.01 2.28
𝜏 = 0.05 106.51 221.40 260.10 202.70

3 𝛿∗1 = 𝛿0
1 + 𝜏 𝜏 = 0.10 115.70 152.33 305.29 544.60

𝜏 = 0.25 18.81 63.35 107.20 431.00
𝜏 = 0.05 93.58 232.30 246.10 216.10

4 𝛿∗i = 𝛿0
i + 𝜏 𝜏 = 0.10 36.33 142.00 185.94 218.50

𝜏 = 0.25 4.94 52.88 92.23 53.87
n = 50 327.60 74.97 1.64 40.81

5 Merge comm. n = 100 247.00 39.79 1.66 27.61
n = 500 72.70 37.56 1.61 37.32
n = 50 152.10 32.88 168.30 427.80

6 Split comm. n = 100 127.50 33.90 313.39 426.20
n = 500 72.70 33.37 315.50 446.50

TABLE 2 Average ARLs for simulations in Section 7.2 when
m = 1000

chart detects the change almost immediately. Interestingly, this result does not appear to depend on the size of
the network.

When community j is split into two (equally sized) communities, the illustrative example in Section 7.1 suggests
that a control chart for P̂𝑗,𝑗 should signal most quickly. The results in the Simulation 6 row of Table 2 substantiate
this; when community 1 is split into two communities, the control for P̂1,1 detects this more quickly than the
other control charts, but perhaps not as quickly as a practitioner would like. This suggests that the proposed
surveillance methodology may not be well suited for detecting community splitting, even though it is highly
effective at detecting each of the other types of structural change considered.

8 DISCUSSION

In this paper, we have illustrated the utility of the degree corrected stochastic block model (DCSBM) in detecting local
and global structural changes in networks. Our proposed model is flexible, and can capture both degree heterogeneity
and community structure in networks, two important features that are common in social and biological networks. We
proposed a fast and effective monitoring methodology based on the surveillance of maximum likelihood estimates from
the DCSBM using Shewhart and EWMA control charts for individuals. When applied to the US Senate covoting network,
our methodology was able to identify relevant and significant changes in the bipartisan nature of the US Congress. Our
analysis reveals that the dynamic DCSBM can effectively model a variety of dynamic networks with structural changes,
and that our proposed surveillance strategy can detect relevant changes in a real dynamic system.

The majority of contemporary surveillance methodologies are based on the assumption that the observed dynamic
graph is unweighted. As a consequence, model-based approaches generally model the existence of an edge as a Bernoulli
random variable and often rely on some thresholding technique on count data. The DCSBM flexibly models the edge
weight associated with each edge using a Poisson random variable. In future work, we plan to use the DCSBM to quantify
the loss of information when count data is thresholded to binary outcomes. Furthermore, it would be interesting to gener-
alize the work done here to random graph models with continuous-valued edge weights such as the weighted stochastic
block model from Aicher et al60 or the generalized exponential random graph model developed in previous studies.61-63

Our proposed monitoring strategy establishes one practically useful technique among a general family of methods for
surveillance. Our framework relies on two components: a parametric dynamic random graph model for modeling the
features of the graph, and a control chart from statistical process monitoring for the detection of changes in the parameters.
We considered a dynamic DCSBM random graph model and the Shewhart and EWMA control charts for surveillance.
This serves only as a first step in understanding the utility of our proposed surveillance strategy. In future work, it would
be useful to explore the use of other parametric random graph models and control charts and to assess the advantages and
disadvantages of each strategy. In particular, future work will explore the utility of dynamic latent space models like that
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discussed in Sewell and Chen21 as well as dynamic exponential random graph models like the TERGM family described
in Hanneke et al.19 Finally, as our proposed method is a model-based strategy, model misspecification is a real practical
concern. Model selection for network data remains a relatively open area, although some initial work has been done.50

Studying the effect of misspecification on monitoring is an important area of research that requires a considerable amount
of work. We plan to pursue this area in future work.
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