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ABSTRACT
I discuss the article “Real-time monitoring of events applied to syndromic surveillance” by
Sparks and collaborators. This discussion focuses on how statistical network modeling and
inference can be used to augment the analysis done in their paper. In particular I describe
what network models can be used to characterize the dynamics and interactions of Twitter
users, and more broadly how network analysis can be used to benefit statistical process
monitoring. I hope to not only provide readers a new perspective on how to approach stat-
istical process monitoring in the context of social interactions, but also to motivate future
research that address the unique challenges facing quality engineers.
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Introduction

I would first like to congratulate Professor Sparks and
collaborators on their development and thorough inves-
tigation of strategies for monitoring time between
events (TBE) data. The key aim of the presented meth-
odology is to monitor contagion outbreaks among the
attendees of the Commonwealth games. To identify
outbreaks, the authors develop exponentially weighted
moving average plans to monitor the time between the
attendees’ tweets that contain key phrases related to ill-
ness, including, for example, the phrases “coughs,”
“feeling unwell,” and “fever.” The hope is that signifi-
cant increases in tweets about illness signal the onset of
an outbreak of some related contagion.

The application of statistical process monitoring
(SPM) to syndromic surveillance is a challenging but
important endeavor as quality engineers can signifi-
cantly advance the early detection and management of
contagious disease and illness. Although the overall
utility of the monitoring plans developed in this paper
should certainly be acknowledged, it is my belief that
one of the most significant advances in this paper is
the authors’ use of Twitter data to achieve their goal.
Indeed, this application provides a demonstration of
the importance and possible power of social media
data. Recent news has very clearly established the
influence of social media platforms such as Facebook

and Twitter—from the dissemination of the #MeToo
movement to the motivation of political and industry
leaders’ actions on women’s rights and gun control.
The use of social media data arising from these plat-
forms, however, remain largely unexplored by quality
engineers and statisticians alike.

Social media data manifest as a collection of meas-
urements over a complicated system describing the
demographics, social dynamics, and interactions of
users. As a consequence, few have grasped exactly
how to make use of such data to enhance their analy-
ses. Making sense of the rich but noisy information
from social media platforms is an important but
immensely challenging task that needs to be
addressed. It is this challenge for which I hope to
shed some light in this discussion. I believe that social
network analysis is exactly what is needed to effect-
ively incorporate and at least partially make sense of
social media platforms, and this opinion is well-sup-
ported by past significant analyses of Facebook and
Twitter (Ugander et al. 2011; Zaman et al. 2010).
Treating the TBE of tweets considered in this paper as
a leading example, I will provide simple network ana-
lysis strategies—some old and some new—that address
two important questions:

1. What network models characterize the dynamics
and social interactions of Twitter users?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

CONTACT James D. Wilson jdwilson4@usfca.edu Department of Mathematics and Statistics, University of San Francisco, 2130 Fulton Street, San
Francisco, CA 94117.
This article was presented at the Sixth Stu Hunter Research Conference in Roanoke, VA, March 2018.
� 2018 Taylor & Francis

QUALITY ENGINEERING
https://doi.org/10.1080/08982112.2018.1501063

http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2018.1501063&domain=pdf
http://orcid.org/0000-0002-2354-935X
https://doi.org./10.1080/08982112.2018.1501063
http://www.tandfonline.com


2. How can network analysis benefit SPM strategies
like those considered in this paper?

For the first question, I will discuss two families of
well-established network models that readily fit the
problem at hand—naturally occurring networks, and
probabilistic graphical models. For the second ques-
tion, I propose a few simple network analysis strat-
egies that I believe will provide significant insights to
the application considered. In this discussion I hope
to not only provide the readers a new perspective on
how to approach SPM in the context of social interac-
tions, but also to motivate future research that address
the unique challenges facing quality engineers.

Why use networks for statistical
process monitoring?

The study of networks has been motivated by the
modeling and understanding of complex systems.
Networks are used to model the relational structure
between individual units of an observed system.
Network-based models have been used in a variety of
disciplines: in biology to model protein-protein and
gene-gene interactions; in sociology to model friend-
ship and information flow among a group of individ-
uals; and in neuroscience to model the relationship
between the organization and function of the brain.

Network analysis stems, and has had a profound
impact in, the social sciences where questions center
around the dynamics of individuals. From Moreno’s
first use of a social network in Moreno and Jennings
(1934) to modern day analyses of social media
(Ugander et al. 2011; Bhamidi et al. 2015), our under-
standing of social interactions has greatly improved
(see Wasserman and Faust (1994) for an extensive
treatment on the topic). Statistical and computational
advances have further enabled the modeling and ana-
lysis of large data sets like those arising from social
media (Goldenberg et al. 2009).

One can leverage the rich literature of social net-
work analysis to enhance the current capabilities of
SPM especially in the presence of social media data.
In particular, social network analysis provides strat-
egies that can be used to directly analyze relational
data and should be incorporated in SPM analysis of
social media for (at least) the following two reasons:
(i) network models provide a richer understanding of
social media users than demographic and TBE meas-
urements alone, and (ii) network analysis enables the
monitoring of both global (considered in this paper)
and local signals in the system under surveillance.

I claim that the first reason is self-evident based
on the tremendous development and application of
network analysis techniques over the past four deca-
des. Having said that, the choice of which network
model still requires careful consideration and rea-
sonable knowledge and exploration of the data being
studied. It also requires an understanding of which
network models provide meaningful representations
of the data and what subsequent analyses of the net-
work could possibly discover. To provide some intu-
ition in the case of Twitter data, I will provide three
different network models for the monitoring of TBE
on Twitter.

In the paper being discussed, the authors monitor
the TBE, fw1; :::;wn�1g , of illness-related tweets
among an entire population of Twitter users. By mon-
itoring the entire population, however, only global
outbreaks, or outbreaks that occur across the popula-
tion, can be detected. Thus, this strategy does not
account for possible localized outbreaks—contagion
outbreaks that occur among a smaller group of users,
whose group perhaps contains users from a similar
geographic location, or users who attended the same
concert event or boarded the same airline from which
a contagion originated. Armed with the networks
describing the Twitter users under study, one can
readily monitor localized outbreaks in addition to the
global outbreaks of the original monitoring plan. I
discuss this more fully below.

Networks describing twitter and time between
events data

The first task in any network analysis is to determine
what network models are appropriate for the observed
data and the question at hand. That is, one needs to
construct a network model G ¼ ðV;EÞ so that the ver-
tex set V represents the actors or individuals of inter-
est, and the edge weights E quantify the strength of
dependence between pairs of actors. In the case of
Twitter data, V almost always represents the users on
Twitter. The choice of E, on the other hand, requires
more thought. In this application, one can construct
at least three models for E without much effort, each
of which provide different and potentially useful
information about the relationships of the users. Next,
I will describe these three models—two arising directly
from the social relationships of the users, and the
other as a probabilistic graphical model that describes
the dependence between users as measured from
TBE data.
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Naturally occurring networks for twitter:
Follower and re-tweet networks

Perhaps the most common two networks used to ana-
lyze Twitter are the Follower and retweet networks
(see, e.g., Bhamidi et al. (2015)). The Follower and
retweet habits of users on Twitter are each example of
what is sometimes referred to as a naturally occurring
network. A naturally occurring network on actors V
exists if there are any relational measurements taken
on the actors, namely measurements that are taken
over pairs of actors. For the Follower network, one
observes the following pairwise measurements for all
u; v 2 V :

xF u; vð Þ ¼ I u follows vð Þ:
For the retweet network, the following binary

measurements are observed for each pair of actors
u; v 2 V :

xRT u; vð Þ ¼ I u hasre�tweeted v during theð
data collection processÞ:

Notably, the quantity xRTðu; vÞ could also be speci-
fied to quantify the number of times u retweets v.
One also needs to be careful about the length of time
over which these values are measured. The subsequent
analysis would rely on techniques appropriate for
weighted networks (Wilson et al. 2017). Whatever the
choice, the Follower and retweet networks are the
directed networks G ¼ ðV;EÞ with edge weights E ¼
fxFðu; vÞ : u; v 2 Vg and E ¼ fxRTðu; vÞ : u; v 2 Vg ,
respectively.

Probabilistic graphical models for time
between events

Professor Sparks and collaborators monitored the
TBE, fw1; :::;wn�1g , of an illness-related tweet over
the entire population. It is likely, however, that each
user’s tweet is dependent upon the tweets of other
users in the population. If the social structure of the
Twitter users or social media data under consideration
is not available, it is still possible to construct a net-
work describing the users’ relationships using individ-
ual TBE using probabilistic graphical models.

Undirected graphical models, also known as
Markov networks, have a long history and are now
ubiquitous in statistical machine learning (see Koller
and Friedman (2009); Wainwright and Jordan (2007)
for book-level treatments of the topic.) Given a vector
of random variables X ¼ ½X1; :::;Xp� , an undirected
graphical model for X is the graph G ¼ ðV;EÞ with
vertex set V ¼ f1; :::; pg and edge set E containing

pairs (u, v) for which Xu is conditionally dependent
upon Xv given the remaining variables fXj : j 6¼ u; vg.
By construction, the graph G represents a first order
Markov dependence between the variables of X.

Much of the research on undirected graphical mod-
els has focused on the family of Gaussian graphical
models, under which X is assumed to be a multivariate
Gaussian random vector. Yang et al. (2015) very
recently extended the foundations of Gaussian graph-
ical models to random vectors from multivariate expo-
nential families. It is that work that enables the
estimation of a probabilistic graphical model for the
TBE data for Twitter users. Let wðuÞ

t denote the
time between the tth and tþ 1st event for user u. Set
Wt :¼ ½wðuÞ

t : u 2 V� to be the vector of these TBE for
each user. Under the assumption that Wt is a random
vector from some multivariate exponential family, it is
possible to estimate a graph at time t using the M-esti-
mation strategy described in Yang et al. (2015). If the
TBE is assumed to a multivariate exponential random
vector, an example explored in Professor Sparks’ paper,
one can estimate the graphical model characterizing the
TBE vector Wt. The precise details of this model is pro-
vided in equation (15) of Yang et al. (2015).

The above strategy presents just one example of a
probabilistic graphical model for TBE, though others
are possible. Future work should investigate how to
estimate an exponential model with temporal depend-
ence as well as for other distributions like the Gamma
distribution described in Sparks’ work.

Monitoring TBE using social networks data

Once a network model (or some collection of models)
has been chosen, one can augment the monitoring
strategy on TBE using network characteristics. The
monitoring of networked data has recently gained a
lot of attention, but new methods are needed (see
Jeske et al. (2018) and Woodall et al. (2017) for recent
reviews). For the discussion of TBE, I will revisit the
challenge of monitoring the system for local outbreaks
in addition to global ones. I propose three subgraph-
based strategies to provide some intuition as to what
is possible. These strategies are motivated by the
homophily principle (McPherson et al. 2001), which
posits that vertices with similar external characteristics
are highly connected to one another in the network.

1. Neighborhood TBE: In unweighted undirected
networks the neighborhood of vertex u, NeðuÞ, is
defined as the collection of vertices that share an
edge with u in V. Analogous definitions are
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available for directed and weighted graphs, but I
omit them here. Local outbreaks can be detected
through the monitoring of the TBE for vertices in
each neighborhood of G. That is, the neighbor-
hood TBE given by wNeðuÞ ¼ fwðvÞ

i : v 2 NeðuÞg
can be monitored for each node u.

2. Clique TBE: A clique is a complete subgraph of
vertices, namely a collection of vertices where
every pair of vertices contains an edge between
them. For each vertex u, let ClðuÞ denote the larg-
est clique for which u belongs. Note that the ver-
tices in the clique of u is a more strongly
connected subset of the vertices belonging to the
neighborhood of u and hence represents a collec-
tion of vertices that demonstrate strong clustering.
Once the maximal clique for each vertex has been
identified, the clique TBE given by wClðuÞ ¼ fwðvÞ

i :

v 2 ClðuÞg can be monitored.
3. Community TBE: Empirically the nodes of a net-

work G can often be divided into k � 1 disjoint
vertex sets as V ¼ V1 [ V2::: [ Vk in such a way
that the density of edges within each vertex set
Vj � V is substantially greater than the density
between differing sets. These densely connected
vertex sets are commonly referred to as commun-
ities. In many applications, the communities of a
network provide structural or functional insights
about the modeled complex system. For example,
recently community structure has been used to
help develop hypotheses about gene interactions
and antibiotic resistance (Parker et al. 2015),
about the dynamics of social interactions using
cell phone data (Greene et al. 2010), and in iden-
tifying functional subregions of the brain
(Stillman et al. 2017). The substantial relevance of
communities in network systems has led to a
large and growing literature about community
structure and the identification of statistically
meaningful communities (Wilson et al. 2014;
Porter et al. 2009; Fortunato 2010). With the
communities in hand, one can monitor the com-
munity TBE wj ¼ fwðvÞ

i : v 2 Vjg for each com-
munity j ¼ 1; :::; k.

The above three strategies provide a straightforward
manner to augment the analysis of TBE. It should be
noted that these strategies generalize to any statistics
measured on the individuals, including for example
the counts of events considered in this paper. An
example of a monitoring plan that investigates local
and global network changes is described in (Sparks
and Wilson 2016). Further, Wilson et al. (2016)

investigated the monitoring of networks with commu-
nity structure that change through time. Higher order
subgraph structures, like triads or cycles can also be
investigated. Finally, changes in the overall generative
process describing the observed network through time
can also be monitored. Such analyses rely upon the
appropriate definitions of dynamic random graph
models that characterize the temporal dependence
between networks. There are several works in this
area to consider, including dynamic versions of the
exponential random graph model (Hanneke et al.
2010; Krivitsky and Handcock 2014; Lee et al. 2017),
latent space networks (Sewell and Chen 2015), as well
as stochastic block models (Wilson et al. 2016; Xu
and Hero 2014).

As discussed earlier, there are multiple network
models that describe the Twitter users in this study.
Together, these different models form a multiplex net-
work model of the Twitter users. To utilize the infor-
mation from each of the network representations,
multiplex network methods can be used (see Kivel€a
et al. (2014) for a recent review). To provide a con-
crete example, for the community TBE defined above,
communities can be identified using multilayer net-
work community detection methods like those avail-
able in Mucha et al. (2010), De Domenico et al.
(2015), and Wilson et al. (2017).

Concluding remarks

I would like to thank the organizers of the Sixth Stu
Hunter conference for giving me the opportunity to
discuss this work. Professor Sparks and collaborators
have set the stage in the development of SPM meth-
odology to social media data for syndromic surveil-
lance, yet important challenges still face the quality
engineering community. I have discussed and sought
to address one major challenge, which is how to util-
ize social media data to enhance the application of
SPM. My discussion focused on the use of network
analysis for social media platforms. I described strat-
egies for how to choose an appropriate network model
for the dynamics and interactions of individuals, as
well as how to subsequently utilize these networks to
monitor events from the individuals. I hope that this
discussion provides a new lens from which quality
engineers can view the problem of SPM. Moreover, I
hope that the proposed strategies here motivate future
analyses that address the unique challenges of moni-
toring networked data. I look forward to what is
to come.
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