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ABSTRACT
This article investigates the detection of communication outbreaks among a small team of
actors in time-varying networks. We propose monitoring plans for known and unknown
teams based on generalizations of the exponentially weighted moving average (EWMA)
statistic. For unknown teams, we propose an efficient neighborhood-based search to
estimate a collection of candidate teams. This procedure dramatically reduces the
computational complexity of an exhaustive search. Our procedure consists of two steps:
communication counts between actors are first smoothed using a multivariate EWMA
strategy. Densely connected teams are identified as candidates using a neighborhood search
approach. These candidate teams are then monitored using a surveillance plan derived from
a generalized EWMA statistic. Monitoring plans are established for collaborative teams,
teams with a dominant leader, as well as for global outbreaks. We consider weighted
heterogeneous dynamic networks, where the expected communication count between each
pair of actors is potentially different across pairs and time, as well as homogeneous
networks, where the expected communication count is constant across time and actors. Our
monitoring plans are evaluated on a test bed of simulated networks as well as on the U.S.
Senate co-voting network, which models the Senate voting patterns from 1857 to 2015.
Our analysis suggests that our surveillance strategies can efficiently detect relevant and
significant changes in dynamic networks.

KEYWORDS
anomaly detection;
exponentially weighted
moving average; network
surveillance; outbreak
detection; statistical
process control

1. Introduction

In many applications, it is of interest to identify anom-
alous behavior among the actors in a time-varying
network. For example, in online social networks,
sudden increased communications often signify illegal
behavior such as fraud or collusion (Pandit et al. 2007;
Savage et al. 2014). Anomalous changes like these
are reflected by local structural changes in the
network. The goal of network monitoring is to provide
a surveillance plan that can detect such structural
changes. Network monitoring techniques have been
successfully utilized in a number of applications,
including the identification of central players in terror-
ist groups (Krebs 2002; Porter and White 2012; Reid
et al. 2005) and the detection of fraud in online
networks (Akoglu and Faloutsos 2013; Chau et al.
2006; Pandit et al. 2007). As available data has become
more complex, there has been a recent surge of
interest in the development and application of scalable

network monitoring methodologies (see Savage et al.
(2014) and Woodall et al. (2017) for recent reviews).

In this article, we investigate monitoring the inter-
actions of a fixed collection of n actors ½n� ¼ f1; :::; ng
over discrete times t ¼ 1; :::;T . In general, an
interaction is broadly defined and may represent, for
example, communications in an online network
(Prusiewicz 2008), citations in a co-authorship
network (Liu et al. 2005), or gene-gene interactions in
a biological network (Parker et al. 2015). We model
the interactions of these actors at time t by an n� n
stochastic adjacency matrix Yt ¼ ðyi;j;tÞ , where yi;j;t is
the discrete random variable that represents the
number of interactions between actor i and actor j at
time t. Our goal is to develop a surveillance strategy
to detect communication outbreaks among a subset of
actors Xt � ½n� at time t.

The identification of outbreaks among a subset of
actors Xt corresponds to detecting sudden increases in
the collection of edges fyi;j;t : i; j 2 Xtg . When the
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team is unknown, monitoring can be computationally
expensive due to the need for identifying candidate
teams. For example, consider a simple case where we
know the size of the target team is nXt ¼ jXtj . An
exhaustive monitoring of all teams of size nXt requires

a procedure of complexity
n
nXt

� �
�nnXt ; which is

infeasible even for moderately sized networks. As
social networks are generally large, for example, n is
on the order of 1 million for online networks like
those representing Facebook or Twitter, exhaustive
searches are not practical in real time. To address this
challenge, we propose a computationally efficient local
surveillance strategy that monitors the interactions of
densely connected neighborhoods through time. Our
proposed strategy has computational complexity of
order n2 and provides a viable strategy for large
networks.

Our surveillance procedure consists of two steps,
which can be briefly described as follows. First, we
smooth the communication counts across all pairs
and time using a multivariate adaptation of the
exponentially weighted moving average (EWMA)
technique for smoothing Poisson counts. By monitor-
ing the smoothed counts, our strategy is robust to
sudden random oscillations in the observed count
process. Next, candidate teams are identified locally
for each node using a neighborhood-based approach.
In particular, at time t, we define a candidate team for
node i 2 ½n� as one that contains larger than expected
communication. Surveillance plans for these candidate
teams are developed using appropriate generalizations
of the multivariate EWMA statistic.

We develop surveillance plans using the above
technique in general for heterogeneous dynamic
networks Y ¼ fY1; :::;YTg, where we suppose that the
expected communication counts are possibly different
for each pair and time, namely, E½yi;j;t� ¼ ki;j;t . We
consider three situations describing the team Xt:

(i) Collaborative teams: members of Xt communi-
cate with one another far more than they com-
municate with actors outside of the team.

(ii) Dominant leader teams: the members of Xt

have a dominant leader � who communicates
frequently with members of Xt, but the mem-
bers of Xt themselves do not necessarily com-
municate frequently among themselves.

(iii) Global outbreaks: the entire network undergoes
a communication outbreak, namely Xt � ½n�.

Scenarios (i) and (ii) are considered for both
unknown and known teams. Each of the scenarios are

also considered for homogeneous networks, where
E½yi;j;t� � k . By investigating both a test bed of
simulated networks as well as a real network
describing the U.S. Senate voting patterns, we find
that our surveillance strategy can efficiently and reli-
ably detect significant changes in dynamic networks.

1.1. Related work

The most closely related work to our current manu-
script is that introduced in Heard et al. (2010). In that
article, the authors also consider monitoring changes
in communication volume between subgroups of
targeted people over time. Their approach evaluates
pairwise communication counts and determines
whether these have significantly increased using a
p-value, which assesses the deviation of the communi-
cation rate at time t and what is considered normal
behavior. Here, normal behavior is modeled using
conjugate Bayesian models for the discrete-valued
time series of communications up to time t. While
their focus is detecting changes on the entire network,
our approach considers detecting communication
outbreaks for members of a small team within the
dynamic network.

There are other model-based network monitoring
approaches that have been recently developed, which
we briefly describe here. Azarnoush et al. (2016)
proposed a longitudinal logistic model that describes
the (binary) occurrence of an edge at time t as a
function of time-varying edge attributes in the
sequence of networks Gð½n�;TÞ . Likelihood-ratio tests
of the fitted model are used to identify significant
changes in Gð½n�;TÞ . Peel and Clauset (2014) devel-
oped a generalized hierarchical random graph model
(GHRG) to model Gð½n�;TÞ. To detect anomalies, the
authors used the GHRG as a null model to compare
observed graphs in Gð½n�;TÞ via a Bayes factor, which
is calculated using bootstrap simulation. Wilson et al.
(2016) proposed modeling and estimating change in a
sequence of networks using the dynamic degree-
corrected stochastic block model (DCSBM). In that
work, maximum-likelihood estimates of the DCSBM
are used for monitoring via Shewhart control charts.
Our model is similar to the DCSBM in that edges
are modeled as having discrete-valued edge weights,
which flexibly model communications in social
networks.

The EWMA control chart is a popular univariate
monitoring technique. The multivariate EWMA
process that we use here is a generalization of the
univariate EWMA strategies for Poisson counts
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considered in Weiß (2007, 2009), Sparks et al. (2009,
2010), and Zhou et al. (2012). A related multivariate
EWMA control chart has previously been successfully
applied to space-time monitoring of crime (Kim and
O’Kelly 2008; Nakaya and Yano 2010; Neill 2009;
Zeng et al. 2004).

A related problem to what we consider here is that
of high-dimensional testing and monitoring over large
collections of data streams (Liu et al. 2015; Mei 2010;
Zou et al. 2015). Generally, the application of these
methods involve continuous data that stream in over
time and can be thought about as a dynamic process
on a graph; whereas the current study investigates
changes in the graph structure itself. In each of the
cited studies, the authors monitored applications with
on the order of hundreds of data streams, which
computationally is much easier to handle than a
collection of unordered individuals, as we consider
here. Our application involves a maximum of 1000 by
1000¼ 1,000,000 data streams of counts and thus is
an order of magnitude more complex than these
aforementioned applications. The process of screening
for members of a leader’s team that we consider here
when the team is unknown is reminiscent of the local
CUSUM strategy of Mei (2011). Furthermore, our
strategy is similar to the adaptive sampling strategy
introduced in Liu et al. (2015), which relies on
random sampling when the process is in-control and
greedy sampling of the population when the process is
out-of-control.

Our specified dynamic network model for Y ¼
fY1; :::;YTg is related to several well-studied random
graph models, which are ubiquitous in social network
analysis. For example, when yi;j;t are independent and
identically distributed PoissonðkÞ random variables,
the graph at time t is an Erd}os-R�enyi random graph
model with edge connection probability k (Erd€os
and R�enyi 1960). On the other hand, when yi;j;t are
independent Poissonðki;j;tÞ random variables, graph t
is a weighted variant of the Chung-Lu random graph
model (Aiello et al. 2000). Random graph models
play an important role in the statistical analysis of
relational data. Goldenberg et al. (2010) provide a
recent survey about random graph models and their
applications.

1.2. Organization of this article

The remainder of this article is organized as follows.
In Section 2, we describe how to smooth the observed
communication counts using multivariate EWMA
smoothing. In Section 3, we develop surveillance

strategies for communication outbreaks among small
teams of actors in a dynamic network when the target
team is known. We consider collaborative teams,
dominant leader teams, as well as global outbreaks.
Section 4 describes our proposed local search and
monitoring approach for unknown target teams.
Section 5 investigates the performance of our surveil-
lance strategies on a test-bed of simulated networks.
We make recommendations on designing the plans in
such a way to minimize false discovery. In Section 6,
we further assess the performance of our strategy by
applying the plans to the heterogeneous network
describing the U.S. Senate voting patterns from the
35th to the 113th Congress. We discuss the advan-
tages of utilizing the square-root transform for our
proposed monitoring strategies in Section 7. We
conclude with a summary of our findings and discuss
directions for future work in Section 8.

2. Temporal EWMA smoothing of interactions

Throughout this work, we are concerned with detect-
ing significant increases in communication among the
members of some subset of actors Xt � ½n�. Such fluc-
tuations correspond to sudden spikes in the collection
of edge weights fyi;j;t : i; j 2 Xtg . In many cases, the
communication counts fyi;j;t : i; j 2 ½n�; t ¼ 1; :::;Tg
are prone to random fluctuations that arise from noise
in the observed process. If not accounted for, direct
monitoring of counts may lead to false discovery. To
reduce this possibility, we smooth the observed counts
using a reflective EWMA strategy (Gan 1993).

To begin, we first obtain a collection of smoothed
values feyi;j;t : i; j 2 ½n�; t ¼ 1; :::;Tg using an EWMA
strategy. Fix a 2 ½0; 1�, and defineeyi;j;t ¼ a yi;j;t þ 1�að Þ eyi;j;t�1: [1]

Denote the expected value of eyi;j;t by eki;j;t . The
expected values of these smoothed counts can be
calculated using the following recursion:eki;j;t ¼ a ki;j;t þ 1�að Þ eki;j;t�1:

In the above recursion, the initial values are set aseyi;j;0 ¼ eki;j;0 ¼ ki;j;1 . Here, a acts as a smoothing par-
ameter that dictates the temporal memory retained in
the stochastic process feyi;j;t : i; j 2 ½n�; t ¼ 1; :::;Tg .
Large values of a retain less memory and result in less
smoothing. In our applications, we fix a to 0.075
based on the previous analysis and suggestion of
Sparks and Patrick (2014).

Notably, the EWMA in [1] will not reflect a change
in the observed count process in the scenario that yi;j;t

JOURNAL OF QUALITY TECHNOLOGY 3



decreases immediately before a significant (anomal-
ous) increase. To avoid this worst-case scenario, we
use the reflective boundary EWMA process fy�i;j;t :
i; j 2 ½n�; t ¼ 1; :::;Tg, defined by

y�i;j;t ¼ max a eyi;j;t þ 1�að Þ y�i;j;t;eki;j;t� �
[2]

The reflective boundary EWMA specified in [2] is
robust to sudden oscillations in the count process.
Our surveillance plans will utilize the smoothed
counts from [2] rather than the originally observed
counts.

3. Monitoring a known team of actors

We begin by considering the simplest case when the
target team Xt is known a priori. This scenario arises,
for example, in the surveillance of the communication
among a known active group of terrorists in a large
terrorist network. We develop surveillance plans for
collaborative and dominant leader teams, as well as
global changes, where the entire network undergoes a
communication outbreak. For each of these scenarios,
we describe monitoring a homogeneous sequence of
networks Y , where the collection of expected commu-
nications fki;j;t : i; j 2 ½n�; t ¼ 1; :::;Tg are such that
ki;j;t � k for all i, j and t, and further describe how to
extend the plans in this regime to the more general
heterogeneous case, where expected communications
are possibly different across time and actor pairs.

In both this section and Section 4, we will make
use of two tunable parameters – a 2 ½0; 1�: a smooth-
ing parameter that controls the extent to which a
proposed EWMA statistic has temporal memory, and
hð	; 	Þ : threshold functions that are chosen to control
false discovery of the proposed monitoring plan. We
fix a ¼ 0:075 based on previous analysis conducted in
Sparks and Patrick (2014). The threshold functions
hð	; 	Þ are chosen via simulation of the monitored
process. We describe how these are chosen in detail
in the Appendix.

Throughout this and the following section, let eyi;j;t
and y�i;j;t be the EWMA and reflective boundary
EWMA defined in [1] and [2], respectively. Further,
we denote nXt ¼ jXtj as the number of individuals in
the team.

3.1. Xt is a collaborative team

We first consider monitoring for outbreaks among a
collaborative team Xt, wherein all members of Xt are
expected to communicate regularly. An outbreak in a
collaborative team is reflected by a large average

number of communications between members i; j 2
Xt . To detect such outbreaks, we analyze the mean,
lXt

, of the smoothed interactions in the collection
defined as

lXt
¼ E

X
i2Xt

X
j2Xt

eyi;j;t� �
¼

X
i2Xt

X
j2Xt

eki;j;t [3]

In the case that Y is homogeneous, note that lXt
¼

n2Xt
k . We use a group-EWMA (GEWMA) statistic to

identify outbreaks among the actors in Xt. The
GEWMAt process is defined by the following
recursion:

GEWMAt

¼ max a
X
i2Xt

X
j2Xt

eyi;j;t þ 1� að Þ GEWMAt�1; lXt

� �
;

[4]

where the initial value GEWMA1 ¼
P

i2Xt

P
j2Xt

eyi;j;1.
For homogeneous networks, we use the GEWMAt

process from [4] and flag an outbreak within the team
Xt when ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GEWMAt

p
�nXt

ffiffiffi
k

p
>hG k; nXtð Þ; [5]

where hGðnXt ; kÞ is designed to give the plan a low
false-discovery rate. Importantly, the square-root
transform of the GEWMAt process in [5] stabilizes
the variance of the process (see Bartlett 1936). We
find from simulation, which we discuss in detail in
Section 7, that the threshold hGðnXt ; kÞ is not a
function of k nor a function of the group size nor
network size in the case of our application. Hence,
even in the heterogeneous case, we can use a plan
with the threshold hGðnXtÞ . We describe how to
choose the value hGðnXtÞ in the Appendix. Thus, for
heterogeneous networks, we flag an outbreak in the
team Xt whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GEWMAt

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2Xt

X
j2Xt

eki;j;ts
>hG nXtð Þ: [6]

In practice, a target team Xt may purposefully
reduce their communication levels prior to, say,
planning a crime, which may hamper early detection
when using the GEWMAt statistic defined in [4].
To avoid this scenario, one can alternatively use a
reflective boundary GEWMA statistic defined as

GEWMA�
t ¼

X
i2Xt

X
j2Xt

y�i;j;t; [7]

and apply an analogous plan as defined in [6].
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3.2. Xt has a dominant leader

We now consider the scenario in which the target
team Xt has a known dominant leader � 2 ½n�.
We expect that � will have a high level of com-
munication with the members of Xt, but unlike the
collaborative team setting, the members of Xt do not
necessarily significantly interact with one another. In
this case, an outbreak is signaled when there is
either a significant rate of communications between
� and the members of Xt or by a significant rate
of interactions among the members of Xt. As we
primarily need to be concerned with the communi-
cations between a single actor and a collection of
actors, we develop a monitoring strategy that
exploits sparsity in the interactions among the mem-
bers of Xt. At time t, we monitor only the collection
of actors that (a) significantly communicate with the
dominant leader � and (b) significantly communi-
cate with one another. That is, we identify the dom-
inant leader team Xt by following two steps. First,
we identify the team W�;t that contains all individu-
als in ½n� with a significant number of interactions
with �, namely

W�;t ¼ i 6¼ � 2 n½ � :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y��;i;t þ y�i;�;t

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiek�;i;t þeki;�;tq
>k

	 

:

[8]

Next we refine the team W�;t to include only
those members who share a significant number of
communications. We set

Xt ¼

i; j 2 W�;t :
ffiffiffiffiffiffiffiffi
y�i;j;t

q
�

ffiffiffiffiffiffiffiffieki;j;tq
>k or

ffiffiffiffiffiffiffiffi
y�j;i;t

q
�

ffiffiffiffiffiffiffiffiekj;i;tq
>k

	 

:

[9]

The value k is a suitable constant that helps
identify members of the target group and is chosen to
control the size of the team Xt. We consider the
choice of k in our simulation study in Section 5. To
monitor Xt, we use the dominant leader EWMA
(DEWMA) statistic, defined as

DEWMA�;t ¼
X
i2W�;t

y�i;�;t þ y��;i;t
� �þX

i2Xt

X
j2Xt

y�i;j;t:

[10]

When � is known, we can use the DEWMA
statistic from [10] to flag outbreaks in a dominant
leader team. In the case that Y is homogeneous, we
flag an outbreak whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DEWMA�;t

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nW�;tkþ n2Xt

k
q

>hD nk;Xt ; kð Þ: [11]

Above, hDðnXt ; kÞ is chosen to control false
discovery. Once again, simulations suggest that the
square-root transformation rids the dependence of the
threshold hDðnXt ; kÞ on k. In addition, this threshold is
not a function of the group size or the sparsity of
the graph, for example, sparsity can change from one
time point to the next and the threshold will remain the
same. Thus, we use the following general surveillance
plan for heterogeneous networks when � is knownffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DEWMA�;t

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2W�;t

eki;�;t þ ek�;i;t� �
þ
X
i2Xt

X
j2Xt

eki;j;ts
>hD nXtð Þ;

[12]

We note that, when the team and dominant leader
are both unknown, the plan in [12] is complicated by
the fact that we must estimate � and Xt. We discuss
our strategy to handle this in Section 4.

3.3. Global outbreaks

We now consider the case when there is a significant
increase in the number of interactions among every
pair of actors in the network, that is, when Xt � ½n� for
all t. One can generally detect this anomaly early by
monitoring the aggregated interactions over the target
network. To monitor the network for a global outbreak,
one can directly extend the GEWMAt statistic from [4]
to the entire network. Note that , in the case that Xt �
½n� , we have from [3] that l½n� ¼

P
i2½n�

P
j2½n� eki;j;t .

Following our previous development of the GEWMAt

statistic in [4], we define the total-EWMA (TEWMA)
statistic using the following recursion

TEWMAt

¼ max a
X
i2 n½ �

X
j2 n½ �

eyi;j;t þ 1� að Þ TEWMAt�1; l n½ �
� �

;

[13]

where TEWMA1 ¼
P

i2½n�
P

j2½n�eyi;j;1; and a 2 ½0; 1� are
chosen to smooth the TEWMA process. Using
the statistic in [13], we flag a global outbreak in
homogeneous networks whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TEWMAt

p
�n

ffiffiffi
k

p
>hT k; nð Þ: [14]

The threshold hTðn; kÞ is designed to give the plan
a low enough false-discovery rate and is chosen in
the same manner as plan [5]. In general, we flag an
outbreak in heterogeneous networks whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TEWMAt

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2 n½ �

X
j2 n½ �

eki;j;ts
>hT : [15]
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To avoid issues arising from sudden oscillations in
counts, we can instead use the reflected-boundary
TEWMA statistic

TEWMA�
t ¼

X
i2 n½ �

X
j2 n½ �

y�i;j;t; [16]

and apply the plan given in [15].

4. Monitoring of an unknown team of actors

In many applications, Xt is not known a priori. In this
situation, there are two primary difficulties that one
must address. First, the unknown team must be
efficiently estimated. An exhaustive search for an
anomalous team has complexity of order nnXt ; thus, it
is important to employ scalable approaches for
estimation. When Xt is known, the GEWMAt and
DEWMA�;t statistics are invariant to variations in the
communication means. However, when Xt is
unknown, these statistics are no longer invariant to
heterogeneous communication rates through time.
Thus, the second complication comes in adapting the
monitoring plan for a changing mean in heteroge-
neous networks. In this section, we describe a local
search strategy to identify densely connected teams
on which our proposed statistics can be used for
monitoring. Because the global outbreak plan in [15]
is invariant to mean changes, we only need to con-
sider the scenarios when Xt is either a collaborative
team or a dominant leader team.

4.1. Estimating unknown teams

Here, we describe our local search strategy to estimate
collaborative teams as well as teams with a dominant
leader.

4.1.1. Collaborative teams
When the target team is unknown and collaborative,
we propose monitoring a collection of densely
connected teams XC;t :¼ fbX‘;t : ‘ 2 ½n�g at each time
t. We define a candidate team bX‘;t as one in which
all constituent members significantly interact. In
particular, for each ‘ 2 ½n� and each time t, we
identify the candidate teambX‘;t ¼

i 2 n½ � :
ffiffiffiffiffiffiffiffi
y�i;‘;t

q
�

ffiffiffiffiffiffiffiffiffieki;‘;tq
>k; or

ffiffiffiffiffiffiffiffi
y�‘;i;t

q
�

ffiffiffiffiffiffiffiffiffiek‘;i;tq
>k

	 

:

[17]

Above, k is a suitable constant with good detection
properties and is chosen via simulation. Our

specification of each candidate team bX‘;t is motivated
by empirical properties of real networks. One can
view bX‘;t structurally as a hub with center node ‘ .
Hub structures commonly arise in sparse social and
biological networks as well as the well-studied scale-
free family of networks (Barab�asi and Albert 1999;
Tan et al. 2014). Thus, if the unknown team is
suspected to be a collaborative team, we propose
monitoring at most n densely connected teams.

4.1.2. Dominant leader teams
When the dominant leader � and target team Xt are
unknown, we monitor a collection of candidate
dominant leader teams XD;t :¼ fbX�;t : � 2 ½n�g at
each time t. Like the identification of dominant leader
teams in Section 3, we identify a collection of candi-
date dominant leader teams that have a significantly
large rate of communication. First, for a fixed leader
� 2 ½n�, we identify a team bW �;t by finding all individ-
uals in ½n� with a significant number of interactions
with � given by

bW �;t ¼ i 6¼ � 2 n½ � :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y��;i;t þ y�i;�;t

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiek�;i;t þeki;�;tq
>k

	 

:

[18]

We next refine the team bW �;t to include only
those members who share a significant number of
interactions. Namely, we specify the team bX�;t asbX�;t ¼

i; j 2 bW �;t :
ffiffiffiffiffiffiffiffi
y�i;j;t

q
�

ffiffiffiffiffiffiffiffieki;j;tq
>k or

ffiffiffiffiffiffiffiffi
y�j;i;t

q
�

ffiffiffiffiffiffiffiffiekj;i;tq
>k

	 

[19]

The value k is a suitable constant that helps
identify members of the target group with larger than
expected communications with the dominant leader �.
We note that, rather than a normal standardized score
to identify Xt, we use a ‘signal-to-noise’ team identifi-
cation scheme in [18], as this strategy can efficiently
avoid unusual changes that involve very low commu-
nication levels. In the case that the team is unknown,
thresholds depend on both the team size as well as
the total expected communication when the network
is in-control.

4.2. Adapting the plans for heterogeneous networks

Once the candidate teams XC;t ¼ fbX‘;t : ‘ 2 ½n�g and
XD;t ¼ fbX�;t : � 2 ½n�g have been estimated for each
time t, we can develop a monitoring plan. For ‘; � 2
½n�, define the following local GEWMA and DEWMA
statistics:
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GEWMA�
‘;t ¼

X
i2bX‘;t

X
j2bX‘;t

y�i;j;t [20]

DEWMA�
�;t ¼

X
i2bW �;t

y�i;�;t þ y��;i;t
� �þ X

i2bX�;t

X
j2bX�;t

y�i;j;t:

[21]

When the observed network is homogeneous, one
can readily monitor collaborative and dominant leader
teams by using plans [6] and [11], respectively, for the
local GEWMA and DEWMA statistics in [20] and
[21]. When the network is heterogeneous, we develop
an adaptive plan for surveillance as follows. Note that,
for a fixed candidate collaborative team bX‘;t , the plan
in [6] can be re-expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GEWMA�
‘;t=h

2
G ki;j;t; nbX‘;t

� �r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2bX‘;t

X
j2bX‘;t

ki;j;t=h2G ki;j;t; nbX‘;t

� �s
>1

[22]

The threshold in plan [22] no longer depends on
the observed data. We exploit this property and
define an adaptive plan using the local adaptive
group-EWMA (AGEWMA) statistic:

AGEWMA‘;t ¼ GEWMA�
‘;t=h

2
G

eki;j;t; nbX‘;t

� �
: [23]

For an unknown team Xt, a communication
outbreak is flagged whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AGEWMA‘;t

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2bX‘;t

X
j2bX‘;t

eki;j;t=h2G eki;j;t; nbX‘;t

� �vuut >1;

[24]

for any ‘ 2 ½n� . Here, the team must be re-estimated
at each time period t. This adaptive plan in [24] has
the same in-control ATS value used to design the
homogeneous plans for all ki;j;t .

We can use a similar adaptive plan to identify
communication outbreaks in candidate dominant
leader teams. Define the local adaptive dominant
leader - EWMA (ADEWMA) statistic by

ADEWMA�;t

¼
X
i2bW �;t

y�i;�;t
hD eki;�;t; nbX�;t

� �þ y�j;�;t
hD ekj;�;t; nbX�;t

� �0@ 1A
þ

X
i2bX�;t

X
j2bX�;t

y�i;j;t
hD eki;j;t; nbX�;t

� � :

[25]

Using an analogous argument as above for
the adaptive GEWMA plan, we flag a comm-
unication outbreak among dominant leader teams
whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ADEWMA�;t

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2bW �;t

ek�i;�;t
hD eki;�;t; nbX�;t

� �þ
ek�j;�;t

hD ekj;�;t; nbX�;t

� �
0B@

1CA
vuuuut

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2bX�;t

X
j2bX�;t

ek�i;j;t
hD eki;j;t; nbX�;t

� �
vuuut > 1

[26]

for any � 2 ½n� . There are two distinct scenarios in
which an outbreak will be flagged by the plan [26]. In
the first scenario, an outbreak is detected if the team
size of any candidate team significantly increases. This
is likely to happen when, for instance, a leader of
organized crime is trying to recruit a team. In the
second scenario, an outbreak is detected when the
number of interactions within any candidate team
significantly increases. This can occur in two ways: (i)
when individuals within the same team interact more
with individuals outside of their current group or (ii)
members of the group interact significantly more
frequently among themselves. Combinations of (i) and
(ii) may also flag communication outbreaks.

5. Simulation study

We now access the utility of our proposed surveillance
plans on a test bed of simulated networks. We con-
sider two types of communication outbreaks among
small target teams. In the first scenario, we simulate a
collaborative team outbreak where every actor in a
small and unknown team is involved in the outbreak.
In the second scenario, the target team has an
unknown dominant leader whose communication
levels with the remaining team undergoes an out-
break. For each of these cases, we investigate the
effectiveness of the GEWMA and DEWMA strategies.

For each simulation, we generate 100 in-control
networks followed by 500 networks that have under-
gone an outbreak. We record the time to signal - the
number of networks after the change until a signal is
flagged - of the DEWMA and GEWMA plans and
repeat the experiment 10,000 times for the collabora-
tive team outbreak and 1000 times for the dominant
leader outbreak. To evaluate the performance of a
plan, we record the average time to signal (ATS)

[26]
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over the collection of simulations. We present the
results for all simulations in Tables 3 through 15 in
the Appendix.

5.1. Collaborative team outbreaks

Tables 1 through 10 outline the detection properties
of simulated collaborative team outbreaks for net-
works of size n¼ 100. To simulate an outbreak, we
select a fixed but hidden team X � f1; :::; 100g . In
the first 100 in-control networks, communication
counts among the nodes in X have mean k. In the
remaining networks, the nodes in X have an
increased mean communication count of ð1þ dÞk .
We simulate networks with target teams of size nX ¼
6; 7; 8; 9; and 10. For each time series of networks,
we estimate candidate collaborative teams and dom-
inant leader teams via [17] and [19] and then apply

the GEWMA and DEWMA plans from [5] and [11],
respectively.

5.1.1. The GEWMAt plan
In the first part of our study, we simulate homoge-
neous target networks with mean communication
counts of either k ¼ 0:20 or 0.70. We investigate
significance thresholds k between 0.05 and 0.40 in
increments of 0.05. Table 4 explores changes in
communication counts in a team of size 6. Table 1
reveals that k¼ 0.40 provides the best performance for
both k values.

We extend the first simulation to seek the best plan
for detecting the collaborative team X, when nX ¼ 6
and n¼ 100. We investigate significance thresholds of
k between 0.40 and 0.70 for expected communication
rates of k ¼ 0:20; 0:40 and 0.70. Together, Tables 4
and 5 indicate that k¼ 0.60 is the best choice for all k
and X involving 6 of the 100 actors. Furthermore, we
find that the performance of the GEWMA plan
strongly depends on an appropriate choice of k;
the detection performance of the GEWMA plan is
dramatically improved for k¼ 0.60.

We repeat the collaborative team outbreak simula-
tion for a target team of size 7, 8, 9, and 10. In each
simulation, we seek the best significance threshold k
for homogeneous networks with mean communica-
tion k ¼ 0:20; 0:40 , and 0.70. We report the ATS
over 10,000 simulations for each of these settings in
Tables 4 through 9. Our results suggest that k¼ 0.50
is the best choice for all k when nX is 8, 9, or 10,
while k¼ 0.50 or 0.60 is most suitable for networks
where the target team is of size 7. This result sug-
gests that there is an inverse relationship between the
optimal value of k and the size of the target team.
This is helpful in deciding the choice of k for the
GEWMA plan, and it appears that k¼ 0.50 is a
robust choice for the outbreaks considered in
this study.

5.1.2. The DEWMA�;t plan
Tables 10 through 13 report the results of the
DEWMA surveillance plan on the collaborative team
outbreaks described above for target teams of size 6,
7, 8, and 9. For each setting, k¼ 0.45 tends to be the
best choice for significance threshold. The only
exception is in the case that the team is of size 9 and
the mean communication is k ¼ 0:70 , in which case
k¼ 0.40 is the better choice.

Table 1. Comparison of the CUSUM, EWMA, and TEWMA
plans. Each plan was trained to have an in-control ATS of 100.
Results are the average number of time steps until the plan is
flagged from 1000 simulations.

Mean out-of-control data
CUSUM w/ alt.
mean rate 7 EWMA TEWMA

Poisson mean 5
6.0 16.64 15.18 15.41
6.5 9.68 9.21 9.65
7.0 6.60 6.43 7.01
7.5 4.95 4.97 5.56
8.0 4.05 4.05 4.59
8.5 3.39 3.46 3.94
9.0 2.96 3.02 3.46
10.0 2.30 2.45 2.82
Poisson mean 40
43 14.59 14.01 13.84
44 9.88 9.63 9.91
45 7.24 7.24 7.71
46 5.70 5.85 6.32
47 4.72 4.77 5.33
48 3.96 4.18 4.65
49 3.44 3.66 4.12
50 3.09 3.28 3.74
Poisson mean 80
84 14.74 14.96 14.66
85 11.05 11.05 11.37
86 8.62 8.94 9.15
87 6.97 7.36 7.62
88 5.80 6.22 6.72
89 4.99 5.38 5.85
90 4.44 4.73 5.26
91 3.97 4.24 4.76
92 3.63 3.87 4.33
Poisson mean 200
206 15.18 15.92 15.47
207 12.42 13.13 13.11
208 10.44 11.02 11.27
209 8.95 9.45 9.91
210 7.78 8.19 8.52
211 6.83 7.28 7.72
212 6.11 6.53 6.96
213 5.54 5.88 6.45
214 4.95 5,35 5.85
215 4.64 4.99 5.43
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5.1.3. Comparison of the GEWMAt and
DEWMA�;t plans

In comparing the results for the GEWMA and
DEWMA plans on the collaborative team outbreak
simulation, we find that, in general, the GEWMA plan
outperforms the DEWMA plan. In particular, the
GEWMA strategy detects the collaborative team
sooner than its counterpart. For example, when d¼ 1
and k ¼ 0:2 , the strategy based on GEWMAt in
Table 2 had an ATS equal to 11.62 (k¼ 0.60) whereas
the technology based on DEWMA�;t in Table 7
had an ATS equal to 12.90 (k¼ 0.45). Similarly, when
d ¼ 0:50 and k ¼ 0:70; the GEWMAt strategy had an
ATS equal to 8.54 (k¼ 0.50); whereas, the DEWMA�;t

plan had an ATS of 8.87 (k¼ 0.40).

Table 2. The in-control ATS for each network in the
Congressional co-voting network application for thresholds set
to 0.513 and 0.399. The ATS remains stable across time for
each threshold. These results reveal that the threshold is not
a function of network or party size. The first 40 congresses
are shown, though the results are consistent for the
remaining congresses.

Congress
0.513

Threshold
0.399

Threshold Democrats Republicans Other

35 402.3 100.2 47 21
36 397.3 102.3 41 27
37 396.3 102.1 27 43
38 399.8 100.6 10 44
39 398.7 101.7 11 48
40 400.1 100.2 12 57
41 402.1 99.6 13 67
42 399.3 96.8 18 57
43 399.1 101.8 21 58
44 399.9 100.5 34 47 1
45 399.2 101.8 38 43 1
46 401.7 99.8 45 35 1
47 401.2 101.1 39 43 1
48 400.1 100.9 38 40
49 399.7 99.9 36 45
50 402.1 101.0 37 39
51 400.5 100.3 38 53
52 398.7 101.9 44 47 2
53 402.2 100.5 48 43 3
54 398.3 101.2 40 44 4
55 400.6 102.5 38 46 10
56 399.1 101.3 27 56 8
57 398.2 100.7 32 57 1
58 402.4 101.8 33 60
59 401.3 99.5 33 60
60 397.8 100.4 32 63
61 400.3 100.4 40 62
62 398.8 99.1 53 56
63 399.8 100.4 56 44 1
64 399.7 100.7 58 42
65 402.0 100.5 62 49
66 402.8 99.3 50 51
67 401.6 97.4 39 66
68 398.2 100.1 43 57 2
69 402.7 102.3 43 61 1
70 401.5 100.8 48 53 1
71 399.6 101.7 44 64 1
72 402.6 102.8 52 50 1
73 399.2 99.9 63 36 1
74 398.0 98.8 72 25 3
75 400.7 101.0 82 16 4

Table 3. Comparison of results from the application of the
square transformation after the sum (our proposed method)
and before the sum of the counts on a network of 50 actors
with in-control homogeneous means across all actors.
Poisson mean 0.001

Threshold 0.531 2.6446
Delta (shift) Sum then square root Square root then sum

0 441.359 407.373
0.0001 121.959 134.363
0.0002 49.146 55.492
0.0003 27.079 28.726
0.0004 16.917 18.853
0.0005 11.939 13.202
0.0006 9.867 9.773
0.0007 7.499 7.504
0.0008 6.611 6.354

Poisson mean 0.005

Threshold 0.531 2.6446
Delta (shift) Sum then square root Square root then sum

0 439.47 407.129
0.00025 105.368 120.705
0.0005 38.082 47.608
0.00075 21.454 23.374
0.00100 13.037 15.309
0.00125 9.648 10.372
0.0015 7.934 8.007
0.002 5.316 5.305
0.0025 4.205 3.994
0.003 3.528 3.240

Poisson mean 0.025

Threshold 0.531 8.20532
Delta (shift) Sum then square root Square root then sum

0 417.04 400.98
0.0005 115.799 116.017
0.001 47.450 43.729
0.002 15.444 14.958
0.003 9.016 8.378
0.004 5.948 5.926
0.005 4.512 4.687
0.006 3.643 3.758
0.007 3.185 3.199
0.008 2.781 2.855

Poisson mean 0.05

Threshold 0.531 13.685
Delta (shift) Sum then square root Square root then sum

0 399.97 400.38
0.001 77.833 68.323
0.002 26.04 24.305
0.003 13.295 13.371
0.004 9.227 9.118
0.005 6.826 6.959
0.006 5.483 5.606
0.007 4.542 4.616
0.008 3.946 3.996
0.010 3.116 3.187

Poisson mean 0.5

Threshold 0.531 23.9
Delta (shift) Sum then square root Square root then sum

0 420.17 401.50
0.003 78.298 97.075
0.005 37.338 43.236
0.007 21.641 24.998
0.009 15.139 16.774
0.012 9.533 10.162
0.015 7.026 7.560

(Continued)
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Table 4. Collaborative team ATS performance for GEWMAt with nXt ¼ 6.
Communication outbreaks in team of size 6 from a network of size 100

k
0.2 0.7

k 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

d ATS

0.5 70.60 75.33 76.30 74.83 74.11 72.61 53.71 43.36 55.29 57.67 58.23 55.59 47.71 33.97 23.70 17.41
1.0 50.25 56.20 57.65 48.34 45.86 34.02 20.27 16.08 27.69 33.63 37.48 34.24 24.05 14.30 9.19 6.59
2.0 28.15 33.89 34.26 28.32 19.64 12.62 8.05 6.16 15.57 18.32 19.46 16.79 11.60 6.60 4.29 3.09
3.0 19.12 23.48 23.51 19.35 12.67 7.87 5.20 3.95 10.32 12.23 12.96 11.01 7.77 4.50 2.89 2.12
4.0 14.70 15.10 17.46 14.37 9.91 5.78 3.74 2.94 8.23 9.57 10.18 8.22 5.69 3.52 2.24 1.80
5.0 12.06 14.30 13.88 11.30 7.56 4.68 3.13 2.39 6.70 7.89 8.17 6.60 4.69 2.91 1.88 1.41
6.0 10.31 12.15 12.14 9.35 6.29 3.96 2.60 2.11 5.72 6.68 7.03 5.68 3.89 2.46 1.69 1.07
7.0 8.97 10.55 10.33 7.77 5.43 3.41 2.28 1.89 5.22 5.84 5.96 4.83 3.37 2.13 1.46 1.00
8.0 8.05 9.41 9.30 7.25 4.81 3.01 2.01 1.76 4.40 5.26 5.40 4.34 3.02 1.94 1.21 1.00

Table 5. Collaborative team ATS performance for GEWMAt with nXt ¼ 6 pt. 2.
Communication outbreaks in team of size 6 from a network of size 100

k
0.2 0.4 0.7

k 0.4 0.45 0.5 0.6 0.7 0.4 0.45 0.5 0.6 0.7 0.4 0.45 0.5 0.6 0.7

d ATS

0.5 43.36 42.98 41.90 39.75 50.45 43.36 24.01 21.39 20.42 21.61 17.41 14.30 12.98 12.23 13.64
1.0 16.08 12.91 11.87 11.62 12.64 9.28 7.78 7.24 6.93 7.74 6.59 5.50 5.10 5.02 5.56
2.0 6.16 5.29 4.91 4.70 5.40 4.17 3.55 3.38 3.28 3.65 3.09 2.71 2.51 2.49 2.71
3.0 3.95 3.37 3.18 3.11 3.52 2.74 2.42 2.27 2.23 2.47 2.12 1.92 1.84 1.83 1.96
4.0 2.94 2.63 2.46 2.43 2.66 2.16 1.95 1.81 1.82 1.95 1.80 1.55 1.39 1.39 1.58
5.0 2.39 2.13 2.06 2.03 2.18 1.87 1.72 1.57 1.52 1.68 1.41 1.10 1.06 1.06 1.19
6.0 2.11 1.89 1.84 1.75 1.86 1.66 1.32 1.19 1.21 1.40 1.07 1.02 1.00 1.00 1.03
7.0 1.89 1.68 1.60 1.56 1.72 1.31 1.08 1.05 1.05 1.14 1.00 1.00 1.00 1.00 1.00
8.0 1.76 1.46 1.36 1.35 1.54 1.11 1.02 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

Table 6. Collaborative team ATS performance for GEWMAt with nXt ¼ 7
Communication outbreaks in team of size 7 from a network of size 100

k
0.2 0.4 0.7

k TEWMA
GEWMA

TEWMA
GEWMA

TEWMA
GEWMA

k 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

d ATS

0.25 57.26 45.36 40.46 38.98 43.89
0.5 53.45 41.97 34.38 32.10 42.06 43.36 30.71 17.07 16.95 19.56 34.25 13.34 10.70 10.69 12.26
1.0 31.84 12.16 9.83 9.96 11.58 22.00 9.73 6.12 6.16 6.90 16.08 5.44 4.48 4.52 5.02
2.0 14.93 4.986 4.26 4.26 4.80 9.65 4.16 2.98 2.96 3.30 6.68 2.65 2.25 2.30 2.54
3.0 8.99 3.29 2.86 2.91 3.16 5.89 2.81 2.08 2.06 2.26 4.23 1.92 1.72 1.74 1.83
4.0 6.25 2.57 2.18 2.22 2.47 4.19 2.11 1.72 1.72 1.84 3.08 1.53 1.18 1.22 1.33
5.0 4.83 2.06 1.68 1.78 2.01 3.31 1.88 1.36 1.34 1.59 2.49 1.07 1.01 1.02 1.09
6.0 3.95 1.83 1.37 1.39 1.79 2.75 1.63 1.06 1.08 1.24 2.12 1.00 1.00 1.00 1.01
7.0 3.36 1.68 1.15 1.20 1.59 2.39 1.34 1.00 1.01 1.06 1.89 1.00 1.00 1.00 1.00
8.0 2.94 1.45 1.02 1.05 1.10 2.11 1.10 1.00 1.00 1.00 1.39 1.00 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

Table 3. Continued.
Poisson mean 0.5

Threshold 0.531 23.9
Delta (shift) Sum then square root Square root then sum

0.018 5.905 6.011
0.021 4.832 5.073
0.024 4.196 4.190

Poisson mean 1.0

Threshold 0.531 46.5
Delta (shift) Sum then square root Square root then sum

0 400.08 398.185

(Continued)

Table 3. Continued.
Poisson mean 1.0

Threshold 0.531 46.5
Delta (shift) Sum then square root Square root then sum

0.005 62.545 57.482
0.010 21.455 20.675
0.015 11.793 11.774
0.020 7.954 8.463
0.025 5.757 6.245
0.030 4.842 5.135
0.035 4.014 4.357
0.040 3.417 3.738
0.050 2.728 3.069
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5.1.4. Is the methodology fit for purpose?
In order to judge whether the technology is fit for
purpose, we consider the monitoring of a crime. To
be effective, we would like our strategy to flag the
planning of a crime within 7 days. We assume the
following specifications of team behavior:

1. In order to plan a crime, team members should
call each other at least 0.5 per day during
the planning phase. We consider this to be the
lowest level of communication necessary to plan
a crime.

Table 7. Collaborative team ATS performance for GEWMAt with nXt ¼ 8.
Communication outbreaks in team of size 8 from a network of size 100

k
0.2 0.4 0.7

TEWMA
GEWMA

TEWMA
GEWMA

TEWMA
GEWMA

k 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

d ATS

0.25 48.55 30.51 31.99 33.17 38.11
0.5 44.73 30.51 27.60 27.06 32.37 34.98 16.79 14.07 14.50 17.12 25.38 9.89 9.26 9.54 10.91
1.0 24.32 9.89 8.60 8.70 10.34 16.21 6.38 5.60 5.71 6.42 11.20 4.36 4.05 4.13 4.60
2.0 10.44 4.36 3.87 3.95 4.49 6.90 3.30 2.71 2.73 3.11 4.89 2.92 2.09 2.14 2.41
3.0 6.36 2.92 2.62 2.61 2.97 4.33 2.13 1.93 1.94 2.15 3.19 2.20 1.55 1.62 1.77
4.0 4.58 2.20 2.04 2.10 2.33 3.19 1.78 1.58 1.59 1.73 2.38 1.88 1.06 1.11 1.33
5.0 3.62 1.88 1.77 1.79 1.91 2.55 1.37 1.14 1.18 1.41 2.01 1.69 1.00 1.00 1.04
6.0 3.02 1.69 1.49 1.50 1.69 2.15 1.09 1.03 1.03 1.14 1.68 1.43 1.00 1.00 1.00
7.0 2.57 1.43 1.20 1.25 1.47 1.88 1.01 1.00 1.00 1.02 1.52 1.19 1.00 1.00 1.00
8.0 2.29 1.19 1.06 1.09 1.24 1.71 1.00 1.00 1.00 1.00 1.34 1.02 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

Table 8. Collaborative team ATS performance for GEWMAt with nXt ¼ 9.
Communication outbreaks in team of size 9 from a network of size 100

k
0.2 0.4 0.7

TEWMA
GEWMA

TEWMA
GEWMA

TEWMA
GEWMA

k 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

d ATS

0.25 38.20 28.93 25.89 26.56 33.81
0.5 38.23 24.63 22.25 23.50 30.47 27.38 12.45 12.34 13.17 15.19 20.06 9.07 8.54 8.62 9.97
1.0 18.64 8.29 7.58 8.00 9.50 12.01 4.93 4.86 5.14 6.01 8.54 3.94 3.71 3.86 4.07
2.0 7.91 3.83 3.53 3.65 4.15 5.27 2.48 2.47 2.58 2.91 3.87 2.06 1.90 2.02 2.14
3.0 4.89 2.56 2.45 2.46 2.82 3.39 1.82 1.80 1.87 2.01 2.52 1.54 1.38 1.48 1.77
4.0 3.56 2.04 1.89 1.95 2.17 2.52 1.40 1.40 1.47 1.70 2.00 1.05 1.01 1.05 1.33
5.0 2.84 1.80 1.63 1.66 1.81 2.05 1.05 1.05 1.09 1.33 1.64 1.00 1.00 1.00 1.04
6.0 2.39 1.51 1.30 1.40 1.56 1.76 1.00 1.00 1.01 1.08 1.44 1.00 1.00 1.00 1.00
7.0 2.08 1.21 1.07 1.14 1.38 1.58 1.00 1.00 1.00 1.00 1.27 1.00 1.00 1.00 1.00
8.0 1.86 1.07 1.02 1.03 1.14 1.43 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

Table 9. Collaborative team ATS performance for GEWMAt with nXt ¼ 10.
Communication outbreaks in team of size 10 from a network of size 100

k
0.2 0.4 0.7

TEWMA
GEWMA

TEWMA
GEWMA

TEWMA
GEWMA

k 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

d ATS

0.25 52.79 43.36 37.06 43.40 50.28 35.88 23.48 22.57 23.55 28.32
0.50 30.94 21.23 19.82 21.63 25.36 21.69 12.45 10.84 11.64 15.91 10.80 8.30 7.27 7.89 8.89
1.00 14.38 7.25 7.02 7.33 8.60 9.42 4.93 4.67 4.80 6.63 4.62 3.64 3.43 3.66 4.07
2.00 6.12 3.39 3.26 3.47 3.87 4.12 2.47 2.35 2.45 2.81 3.03 1.94 1.90 1.96 2.14
3.00 3.89 2.37 2.20 2.39 2.63 2.70 1.82 1.76 1.81 1.93 2.09 1.35 1.23 1.38 1.63
4.00 2.88 1.90 1.83 1.86 1.99 2.09 1.40 1.27 1.38 1.65 1.26 1.00 1.00 1.02 1.14
5.00 2.32 1.64 1.51 1.62 1.77 1.73 1.04 1.02 1.04 1.23 1.41 1.01 1.00 1.00 1.00
6.00 1.99 1.30 1.18 1.28 1.49 1.51 1.00 1.00 1.00 1.04 1.22 1.00 1.00 1.00 1.00
7.00 1.75 1.06 1.03 1.09 1.25 1.35 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00
8.00 1.57 1.04 1.00 1.02 1.09 1.22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

JOURNAL OF QUALITY TECHNOLOGY 11



2. The planning stage of the crime would result in
at least a doubling of their usual communication
intensity during this planning stage.

3. The usefulness specification is that detection
should be well within 7 days of the start (i.e., the
out-of-control ATS <7).

The last specification allows law enforcement
agencies enough time for appropriate detective work
to be carried out and potentially avoid catastrophic
events such as terrorism. The optimal plan for k ¼ 0:4
and 0.7 pass the usefulness test by flagging within 7
days on average for all groups (e.g., with k ¼ 0:4 ,
k¼ 0.6, the GEWMAt statistics detect the outbreak on
average in 6.93 days). On the other hand, when the
overall communication in the network is relatively
sparse (k ¼ 0:2), this fit-for-purpose test is only met
for collaborative teams having 8 or more members.

5.2. Dominant leader team outbreaks

We now investigate the performance of the GEWMA
and DEWMA plans when the outbreak occurs among
a fixed but unknown dominant leader team in a
homogeneous dynamic network. We simulate the net-
works with the same specifications as the collaborative
team study in Section 5.1, except now the outbreak
only occurs on a fixed subset of communications in
the team (rather than throughout the entire team as
in the collaborative team scenario). In particular, we
consider four different dominant leader teams where a
communication outbreak occurs on the directed edges
shown in Figure 1. In each of these four teams, team
member 6 is assumed to be the dominant leader and
communicates with all other members of the team.

We assess the performance of the GEWMA and
DEWMA plans on these dominant leader outbreaks
and report the results in Tables 14 and 15. Our results
suggest that again the choice of k plays an important

role in establishing the best performing monitoring
strategy. Furthermore, across all values of k k, and nX,
we found that the DEWMA method outperformed
the GEWMA strategy in this simulation study. Both
methods witness improved performance as the signal-
to-noise ratio (d) increases. Our results provide
empirical evidence that the DEWMA plan is an effect-
ive strategy when the target team has a dominant
leader or when the team is more sparsely connected
than a collaborative team.

5.3. Heterogeneous networks with no outbreak

We now assess the performance of the ADEWMA
plan from [26] on heterogeneous networks that
undergo no outbreak, but whose size changes through
time. Without loss of generality, we fix the mean
communication count between node i and j at time t
as ki;j;t ¼ aji�jj þ 0:90; for a fixed constant a< 0.
This specification gives a higher likelihood of commu-
nication between nodes that are close to one another
in the ordering of the nodes. To vary the size of the
network through time, we fix lower (mL) and upper
bounds (mH) and select the size of the t-th network nt
by randomly drawing a discrete value uniformly from
the interval ½mL;mH�.

As there is no outbreak in our simulated collection
of networks, we seek a plan that identifies no change
for some fixed number of time steps. By investigating
this aspect of the ADEWMA plan, we can better
understand how to control the number of false
discoveries under a null model where no outbreak is
present. For our current study, we seek an ADEWMA
plan that delivers an ATS of 100. We note that one
could alternatively seek an ATS of 370 to match the
standard 3-sigma strategy of Shewhart control charts,
but the choice is arbitrary. We vary the values of a,
mL, and mH and identify the threshold adjustment
that acquires the desired ATS over 1000 simulations.

Table 10. Collaborative team ATS performance for DEWMA�;t with nXt ¼ 6.
Communication outbreaks in team of size 6 from a network of size 100

k
0.2 0.4 0.7

k 0.4 0.45 0.5 0.4 0.45 0.5 0.4 0.45 0.5

d ATS

0.5 25.14 22.27 14.94 13.50 14.57
1.0 13.80 12.90 13.56 8.02 7.78 8.0 5.78 5.25 5.69
2.0 5.51 5.34 5.50 3.60 3.57 3.74 2.80 2.66 2.78
3.0 360 3.37 3.55 2.49 2.41 2.51 1.99 1.92 1.97
4.0 2.75 2.55 2.63 1.99 1.91 1.98 1.65 1.60 1.61
5.0 2.23 2.12 2.20 1.71 1.61 1.69 1.15 1.14 1.20
6.0 1.98 1.91 1.94 1.42 1.38 1.40 1.01 1.01 1.03
7.0 1.75 1.71 1.75 1.19 1.18 1.18 1.00 1.00 1.00
8.0 1.58 1.51 1.54 1.04 1.03 1.03 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations
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The threshold adjustments and calculated ATS are
provided in Table 16.

The simulation results in Table 16 reveal that the
ADEWMA plan with threshold 0.984 has an in-
control ATS closest to the desired value of 100 when
mH> 135. On the other hand, when mH 
 135
selecting a threshold of 1 delivers the best plan. These
results suggest that the ADEWMA plan is robust to
large changes in the size of the network from one
time to the next. In many applications (like our

application in Section 6), the size nt is likely to have a
small variation over time. We find that, in these situa-
tions, the ADEWMA plan witnesses an improvement
in overall robustness.

5.4. Comparison of the TEWMA, EWMA,
and CUSUM

We now assess the utility of the TEWMA monitoring
plan in [15] by comparing it with the EWMA plan for

Table 11. Collaborative team ATS performance for DEWMA�;t with nXt ¼ 7.
Communication outbreaks in team of size 7 from a network of size 100

k
0.2 0.4 0.7

k 0.4 0.45 0.5 0.4 0.45 0.5 0.4 0.45 0.5

d ATS

0.5 38.72 18.44 16.89 19.57 11.97 11.36 12.56
1.0 10.56 10.52 11.18 6.72 6.66 7.42 4.78 4.82 5.57
2.0 4.67 4.61 4.90 3.20 3.19 3.44 2.44 2.46 2.76
3.0 3.12 3.09 3.21 2.26 2.18 2.36 1.84 1.86 1.96
4.0 2.43 2.35 2.47 1.85 1.85 1.91 1.33 1.29 1.60
5.0 1.96 1.93 1.99 1.45 1.45 1.60 1.04 1.04 1.20
6.0 1.83 1.73 1.81 1.17 1.14 1.33 1.01 1.00 1.04
7.0 1.59 1.54 1.62 1.04 1.03 1.13 1.00 1.00 1.00
8.0 1.36 1.32 1.40 1.00 1.00 1.04 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

Table 12. Collaborative team ATS performance for DEWMA�;t with nXt ¼ 8.
Communication outbreaks in team of size 7 from a network of size 100

k
0.2 0.4 0.7

k 0.4 0.45 0.5 0.4 0.45 0.5 0.4 0.45 0.5

d ATS

0.25 32.18 35.76 37.24
0.5 32.78 32.88 33.92 15.66 15.29 16.32 10.07 10.16 10.34
1.0 9.54 9.64 10.26 6.09 6.20 6.32 4.36 4.24 4.62
2.0 4.14 4.17 4.32 2.84 2.90 3.02 2.42 2.31 2.35
3.0 2.78 2.74 2.94 2.01 2.03 2.14 1.70 1.68 1.76
4.0 2.12 2.10 2.35 1.66 1.65 1.78 1.21 1.19 1.28
5.0 1.86 1.86 1.90 1.32 1.28 1.40 1.01 1.01 1.02
6.0 1.68 1.63 1.71 1.05 1.04 1.09 1.00 1.00 1.00
7.0 1.37 1.36 1.50 1.00 1.00 1.01 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations

Table 13. Collaborative team ATS performance for DEWMA�;t with nXt ¼ 9.
Communication outbreaks in team of size 9 from a network of size 100

k
0.2 0.4 0.7

k 0.4 0.45 0.5 0.4 0.45 0.5 0.4 0.45 0.5

d ATS

0.25 54.90 48.93 52.01 28.93 26.74 29.78
0.5 22.27 21.86 25.7 14.26 13.10 14.06 8.87 8.94 9.33
1.0 8.47 8.14 9.05 5.51 5.38 5.76 3.91 4.04 4.16
2.0 3.81 3.80 3.96 2.73 2.60 2.84 2.14 2.15 2.19
3.0 2.59 2.59 2.84 1.94 1.91 2.01 1.52 1.58 1.70
4.0 2.04 2.04 2.13 1.48 1.48 1.68 1.04 1.10 1.13
5.0 1.80 1.79 1.86 1.19 1.19 1.26 1.00 1.00 1.00
6.0 1.49 1.48 1.62 1.03 1.03 1.02 1.00 1.00 1.00
7.0 1.25 1.19 1.32 1.00 1.00 1.00 1.00 1.00 1.00
8.0 1.09 1.06 1.10 1.00 1.100 1.00 1.00 1.00 1.00

Note: Bolded values indicate the best ATS performance across simulations
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Poisson counts in [2] as well as the CUSUM plan for
Poisson counts described in Sparks et al. (2010). We
set a ¼ 0:075 for the TEWMA plan. All plans below
were trained to have approximately in-control
ATS¼ 100. We report the results in Table 1. We note
that the same threshold was used for all TEWMA
statistics, but different thresholds were needed for the
EWMA and the CUSUM statistic when the in-control

mean changed. Thus, the main advantage of the
TEWMA statistic is that the threshold is invariant of
the mean counts. We see from Table 8, however, that
its detection properties are not as good as the EWMA
or CUSUM plans. Its primary advantage, therefore, is
on its scalability for large networks.

6. Application to U.S. Congressional voting

We now apply the GEWMA monitoring plan from
[6] to investigate the dynamic relationship between
Republican and Democratic senators in the U.S.
Congress. We analyze the voting habits of each U.S.
senator according to his or her vote (yay, nay,
or abstain) on each bill that went to Congress. We
investigate these voting habits from 1857 (Congress
35) to 2015 (Congress 113).

We generated a dynamic network to model the co-
voting patterns among U.S. Senators in the following
manner. We first collected the raw roll call voting
data for each bill from http://voteview.com. For each
Congress, we generate a new network, where the
senators of that Congress are the nodes and the edge
weight between two senators is the number of bills for
which those two senators voted concurrently in
that Congress. We restrict our analysis to Republican
and Democrat senators only (thus ignoring the
Independent party and other affiliations).

Predictable behavior is regarded as in-control. To
model in-control behavior, we use a logistic regression
model to predict whether two senators will vote the
same on a newly submitted bill. We fit a logistic
model to estimate the probability that a senator
(Senator A) would vote the same as another senator
(Senator B) using the following predictors: (a) the
political affiliation of each senator (Senators A and B),
(b) which party had a majority in the Congress,

Table 14. Dominant leader team outbreaks involving teams of size 6 to 9.
DEWMA GEWMA DEWMA GEWMA

k
0.2 0.4

nX 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9

k 0.45 0.6 0.45 0.6

d ATS

0.25 62.66 54.82 98.60 83.27
0.50 49.48 39.94 34.19 33.78 72.00 63.46 44.72 39.01 27.42 22.54 20.24 15.94 32.74 24.59 21.99 17.97
1.00 15.99 13.19 11.29 10.51 16.91 14.32 13.24 11.44 9.99 8.49 7.27 6.59 9.03 8.42 7.42 6.73
2.00 6.26 5.65 5.09 4.62 6.27 5.68 5.43 4.65 4.29 3.86 3.46 3.16 4.18 3.73 3.67 3.16
3.00 4.25 3.77 3.31 2.39 4.17 3.68 3.48 3.00 2.90 2.56 2.42 2.19 2.83 2.59 2.42 2.21
4.00 3.20 2.83 2.62 1.73 3.18 2.73 2.66 2.38 2.28 2.09 1.90 1.70 2.17 2.06 1.92 1.79
5.00 2.66 2.28 2.11 1.32 2.55 2.39 2.22 1.95 1.94 1.70 1.56 1.36 1.84 1.71 1.59 1.42
6.00 2.16 2.00 1.64 1.06 2.19 2.06 1.86 1.74 1.65 1.48 1.32 1.16 1.61 1.48 1.30 1.18
7.00 1.89 1.78 1.43 1.00 2.01 1.72 1.67 1.52 1.43 1.29 1.10 1.04 1.34 1.29 1.13 1.07
8.00 1.64 1.36 1.24 1.00 1.70 1.61 1.48 1.35 1.22 1.04 1.01 1.00 1.17 1.06 1.00 1.00

Table 15. Dominant leader team outbreaks involving teams
of size 6 to 9.

DEWMA GEWMA

k
0.7

nX 6 7 8 9 6 7 8 9

k 0.45 0.6

d ATS

0:25 53.61 46.84 40.94 33.88 98.12 80.02 67.48 44.12
0:50 16.95 13.82 12.72 10.51 18.12 15.48 14.72 10.94
1:00 6.77 6.01 5.25 4.62 6.38 5.88 5.47 4.81
2:00 3.28 2.90 2.66 2.38 3.04 2.84 2.74 2.46
3:00 2.28 2.03 1.93 1.73 2.17 1.98 2.00 1.83
4:00 1.82 1.70 1.51 1.32 1.76 1.66 1.56 1.39
5:00 1.53 1.21 1.16 1.06 1.40 1.31 1.19 1.09
6:00 1.23 1.09 1.02 1.00 1.13 1.01 1.01 1.00
7:00 1.02 1.00 1.00 1.00 1.02 1.00 1.00 1.00

Table 16. The ADEWMA plans for heterogeneous networks
with no outbreak.
mL mH Threshold adjustment ATS a

100 135 1.005 102.9 �0.0030
115 135 1.0037 103.1 �0.0030
110 150 0.982 104.0 �0.0060
130 150 0.984 102.2 �0.0060
100 175 0.984 100.9 �0.0050
115 175 0.984 102.2 �0.0050
135 175 0.982 103.3 �0.0050
155 175 0.982 101.6 �0.0050
135 250 0.985 99.4 �0.0035
200 250 0.983 102.4 �0.0035
150 275 0.985 100.9 �0.0030
215 275 0.985 103.6 �0.0030
305 315 0.981 101.6 �0.0027
250 350 0.986 99.3 �0.0025
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(c) the proportion of that majority, and (d) the
proportion of representation of Senator A’s political
affiliation. The expected number of votes from
Senator A to Senator B was calculated by multiplying
the predicted probability from the logistic regression
by the total number of votes for that senator. This
count was assumed to be Poisson distributed with
in-control mean given by this expected count.

In this application we are interested in both
unusually high counts and unusually low counts.
Therefore we run two one-sided charts. In particular,
for a target team Xt we analyze the GEWMAt statistic
from [4], as well as the lower GEWMA (L�GEWMAt)
statistic defined by

L�GEWMAt ¼ min a
X
i2Xt

X
j2Xt

eyi;j;t�
þ 1�að Þ L�GEWMAt�1; lXt

�
;

where a was fixed to be 0.075. The plans are trained
using simulation to deliver an in-control false-alarm
rate of 200. The GEWMA and L-GEWMA curves
were calculated from two sources, (i) the likelihood
of Republicans voting with Democrats and (ii) the
likelihood of Democrats voting with Republicans.
We do not expect our co-voting patterns to remain

in-control and predictable; thus, we are particularly
interested in identifying sustained periods of
unusual behavior.

The GEWMA and L-GEWMA curves are plotted
in Figure 4. These plots reveal several interesting
trends in the Congressional co-voting network. First,
the tendency for Republican and Democratic senators
to vote with one another has been significantly low
beginning from Congress 103. This finding supports
the political polarization theory observed in Moody
and Mucha (2013), who noted that the Republican
and Democrat schism began around the time of Bill
Clinton’s first term as president (Congress 103).
Second, there was a sustained coherence of voting
between opposing political parties between Congress
85 (1957) and Congress 100 (1987). During this
time, the likelihood of one party concurrently voting
with the other opposing party was significantly high.
Much of this time period coincides with the
so-called“Rockefeller Republican”era (1960 - 1980) in
which Republican party members were known to
hold particularly moderate views like the former gov-
ernor of New York, Nelson Rockefeller (Rae 1989;
Smith 2014). This finding was also identified using
network surveillance techniques in Wilson
et al. (2016).

Figure 1. Dominant leader target teams for the simulation study. Teams are of size 6, 7, 8, and 9 among a network of size 100.
For each simulation, a communication outbreak occurs only on the directed edges shown. In each simulation, node 6 is the
dominant leader and communicates with every member of the team.
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Figure 2. QQ plots for smoothed EWMA counts generated from Poisson data with small mean, indicated in each plot. The square-
root transformation is on the left and the corresponding log transformation on the right. This figure suggests that the square-root
transformation provides a better Normal approximation than the log transformation when the mean number of counts is small.

Figure 3. Signal-to-noise statistics for the log- and square-root transformed smoothed EWMA counts when no structural
change has been introduced and data are generated from a log-Normal distribution. These results reveal that the square-root
transformations are well suited to networks with sparse communication.
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7. The square-root transformation

For each of the EWMA plans introduced in
Sections 3, 4, and 5, we propose monitoring the
square root of the defined EWMA statistic rather than
the original statistic itself. There are three important
reasons for considering the square-root transform-
ation, which we describe here. The motivation of the
square-root transform becomes particularly evident

for sparse Poisson-weighted networks. Indeed, in this
scenario, we find that (i) the square-root transform
provides a better suited Normal approximation
than the log-transformed counts, (ii) the square-root
transform has fewer false discoveries, and (iii) the
square-root transformed counts are robust to changes
in network size and mean counts. We discuss these
three reasons and provide empirical support for
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Figure 4. GEWMA and L-GEWMA control charts for monitoring (left): the likelihood of Democratic senators to vote with
Republican senators, and (right): the likelihood of Republican senators to vote with Democratic senators. Red dotted lines mark
the control limits of the GEWMA signal-to-noise value for each Congress. In each plot, the upper curve represents the GEWMA
statistic and the lower curve represents the L-GEWMA statistic over time.
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these claims. Finally, we investigate by simulation the
transformation of the EWMA statistic as well as the
original count statistic, motivating our proposed
statistics.

7.1. On the normal approximation for
Poisson counts

We first consider the Normal approximation of the
square-root transformed EWMA statistics arising
from Poisson data with low counts. This scenario is
relevant for our application to Congressional voting,
and is representative of sparse networks that are often
observed in practice. We generate Poisson stochastic
processes with means 0.125, 0.25, 0.5, and 0.75, and
calculate the EWMA statistic under the square root.
We compare the normality of these statistics with the
natural log-transformed EWMA data for comparison.
Quantile-quantile (QQ) plots for each of the transfor-
mations are presented in Figure 2.

This figure demonstrates that, with EWMA
smoothing with weights, the square-root transform-
ation leads to a better normal approximation than the
log transformation for Poisson data with low average
counts. Notably in Figure 2, the upper tail for the
square root transformation is always very close to a
Normal distribution.

7.2. On false discoveries

Another primary reason for utilizing the square-root
transformation is that it avoids flagging unusual
outbreaks in sparse communication regions of
the observed communication matrix. That is, the
square-root transformed version of the EWMA
efficiently reduces false discovery over EWMA
data with no transformation or under the log
transformation. We illustrate this with an example.

Assume that the observed counts are approximately
log-normal distributed with mean equal to -5 and
variance 1, thus favoring the log transformation. In
sparse networks like these, it is desirable to signal a
change only when the counts are reasonably large,
e.g., large enough to efficiently plan a crime. We apply
EWMA smoothing to these counts as is carried out in
the article using the smoother for log counts log yt :

EWMAt ¼ 0:1 log yt þ 0:9EWMAt�1

The signal to noise ratio for the log counts is
reported in Figure 3 for both the square-root and
log-transformed smoothed counts. For this process,
the signal-to-noise ratio is given by

Zt ¼
ffiffiffiffiffi
19

p
EWMAt þ 5ð Þ

Figure 2 plots expðEWMAtÞ against Zt. This figure
represents“pseudo smoothed counts” versus the
signal-to-noise ratio Zt. Using a 3-sigma Shewhart
chart, then the signal-to-noise ratio for the log trans-
form flags an unusual change for very low counts and
these counts are far too low to plan a crime, whereas
the square-root transform is nowhere near flagging
these as unusual. The square-root transform does
what we want it to do in these circumstances.
Similarly, in the voting application, we consider in
Section 6, we are interested in changes in which there
are enough votes before flagging a signal.

7.3. Robust ATS and thresholds

Our third reason for considering the square-root trans-
form is due to the fact that, for the known subgroup
outbreaks, including the outbreaks involving the whole
network, our EWMA plans deliver the identical plan
with the same threshold and in-control ATS. That is,
the ATS of the square root plans do not depend on:

� the in-control mean rates of the individual counts
over time.

� sample changes to the size of the network. For
example, the same threshold applied independent
of the make up of the Senate or the number of
seats the Republicans or Democrats held for in-
control ATS of 100.

We do not prove these results theoretically, but we
demonstrated this through simulation within the
bounds considered in the article. For our political
application, we calculate the ATS for the thresholds
0.513 and 0.399 for the EWMA plan to investigate
whether or not the thresholds are a function of the
number of Democrats and Republicans in the network
or the size of the total network. These values are
reported in Table 2. This table demonstrates that the
test statistic in our application is invariant of changes
in the number of Democratic and Republican Senators
in the senate at any time point. This property together
with the statistic threshold being independent of the
mean counts makes this statistic extremely useful in
simplifying the process of applying these charts.

7.4. On transforming the EWMA statistic vs.
transforming the original counts

The simulation below is of a 50 by 50 communica-
tion network of individuals, which is assumed to
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have an in-control homogeneous communication
mean across the members of the network. We com-
pare the monitoring results of the square root of the
sum of counts (our current approach) against the
sum of the square root of the individual counts. Our
simulations (provided in Table 3 reveal two import-
ant outcomes:

1. Transforming the counts before aggregating does
not have a homogeneous threshold value and
therefore is difficult to implement.

2. The approach of transforming the counts before
aggregating generally results in later detections
of outbreaks.

Therefore, we conclude that the approach taken in
the article - transforming the EWMA statistics directly
- is the preferred method due to the additional
computational effort needed to identify possibly
heterogeneous threshold values for the plan.

8. Discussion

This article introduces novel and computationally
feasible surveillance plans for identifying communica-
tion outbreaks in dynamic networks. In the worst-case
scenario when the target team is unknown, the
proposed method monitors at most n2 candidate
teams, which dramatically improves the computational
memory needed for an exhaustive search. Our new
plan uses a general multivariate EWMA approach to
accumulate temporal memory of communication
counts. The approach can easily be extended to situa-
tions with more than one communication channel.
Plans were extended to handle networks with hetero-
geneous mean counts (as in the application) and the
value of our proposed plans was further demonstrated
with simulated applications.

In our simulation study, we found that our new
approach is able to effectively identify outbreaks
even when the outbreak covers a small number of
communications (<1 percent of total communica-
tions). These results suggest that the technology will
be particularly useful in crime management, as crime
is typically committed by gangs of a small size
(Morgan and Shelley, 2014). Furthermore, we believe
that law enforcement agencies would value our pro-
posed technique as it could be used to help gain
insights on persons of interest (e.g., it could be
applied to juvenile crime rings as a preventative tool
to help reduce repeat offenders).

We found that, when the outbreak is global across
all communications of the targeted people, using the
TEWMAt plan is the best approach and this plan is
invariant of the distribution of communication
counts in the target network. If the communication
outbreak involves a small subgroup of the targeted
people, then the group-EWMA (GEWMAt ) plan has
the best performance. As the size of the outbreak
group is seldom known in advance, applying these
plans simultaneously in a single plan may offer a
more robust means to detect the full range of poten-
tial outbreaks.

Our proposed technique motivates several areas of
future research. For example, future work should
explore the potential of extending this approach to
cover geographic dimensions (see Carley et al. (2013))
to account for the spatial nature of observed dynamic
systems. Furthermore, one can explore other ways of
estimating the target team for monitoring. New
approaches could involve defining people in the
targeted network with either increased connectivity or
historically a high connectivity. The target group itself
could be regarded as varying according to whether
they achieve a certain level of connectivity with the
leaders or average connectivity within the target
group. In principle, one could also estimate teams of
individuals that are most densely connected at time t
using a community detection or extraction algorithm
on the network Yt (Lancichinetti et al. 2010;
Wilson 2017; Wilson et al. 2014; Zhao et al. 2011).
Alternatively, one could identify candidate teams in a
network with statistically significant edges using a
p-value technique like that developed in Wilson
et al. (2013).

This article arbitrarily selected the temporal
smoothing parameter a ¼ 0:075 . Future research
effort could be devoted to selecting an appropriate
value for the multivariate temporal smoothing. We
believe that this effort should be devoted either to
establishing an appropriate robust choice for a or to
alternatively varying the choice of a for each commu-
nication count so as to exploit local trends in the
network such as the work done in Capizzi and
Masarotto (2003). Finally, the methods presented in
this work implicitly assume that the investigator
knows what type of outbreak he or she is searching
for in the data. In practice, however, it is often the
case that the investigator does not know the type of
outbreak that will occur in the system being moni-
tored. In such cases, we recommend either applying
each of the DEWMA, GEWMA, and TEWMA moni-
toring plans or using some consensus of these plans.
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The latter approach would rely on developing some
robust plan, which is akin to the three-CUSUM plan
developed in Sparks (2000). In either case, simula-
tions must account for the use of some combination
of methods and plan thresholds chosen accordingly.
We will investigate the application of robust plans in
future work.
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Appendix

Specification of threshold values

Simulation methods were used to estimate the thresholds
for the DEWMA�;t and GEWMAt plans so as to deliver
an in-control ATS of approximately 100. The thresholds
for both the collaborative team and the dominant leader
team were established in the identical manner. To avoid
redundancy, we will describe the simulation procedure
to determine thresholds in the collaborative
team scenario.

For the DEWMA�;t plan, we simulated networks of
size n ¼ 100; 125; 150; :::; 375; 400 . For each network, we
fixed the temporal memory as a ¼ 0:10 and generated
homogeneous networks with mean counts equal to k ¼
0:01; 0:02; 0:03; :::; 0:10; 0:15; 0:20; :::; 0:95; 1:0 . For each
combination, the thresholds hDðk; nÞ are estimated to obtain
the fixed ATS.

In practice, if the team is known in advance (and hence
no search is needed), the threshold is invariant of the mean
rate and fairly robust to changes in the team size and the
network size as explained in Section 7. In the case that we
do need to identify team members, one must account for
the mean rate of communication across time. The adaptive
approach allows for this to occur across the network as well
as temporal changes like day of the week and seasonal
influences. We use a one-step-ahead forecast to establish
expected communication counts using a Poisson regression.
In particular, the k values were used to build the following
regression model:
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log hD k; nð Þð Þ ¼ b0 þ b1nþ b2n
2 þ b3n

3 þ b4kþ b5k
2

þ b6 I k < 0:95ð Þ þ b7 I k < 0:95ð Þk
þ b8 log kð Þ þ b9n log kð Þ þ b10nkþ b11nk

2

þ error:

Once fitted, the above regression model was used to
estimate the thresholds for the DEWMA�;t plan for homo-
geneous networks with mean count k and size n. The
above fitted model delivers an in-control ATS within
100 ± 15 for the range of 100 
 n 
 400; 0:01 
 k 
 1:0
and a ¼ 0:10. The standard error of the model was 0.0043
and the correlation between the model-fitted values and
the corresponding actual simulated hDðk; nÞ values
was 0.9996.

For the GEWMAt plan, we estimated the threshold
hGðk; nÞ in a similar way as above. We generated networks
of size n ¼ 100; 125; 150; :::; 975; 1000 , fixed a ¼ 0:10 , and
simulated homogeneous networks with mean counts k ¼
0:01; 0:02; 0:3; :::; 0:1; 0:15; 0:2; :::; 0:95; 1:0: For each
combination, we estimated the threshold hGðk; nÞ through
simulation, and then used these estimates to build the

following regression model:

1=hG k;mð Þ ¼ b0 þ b1 log kð Þ þ b2nþ b3n
2 þ b4n

3 þ b5k

þ b6k
2 þ b7k

3 þ b8 log nð Þ þ b9 log kð Þn
þ b10 log kð Þn2 þ b11 log kð Þn3 þ b12nk

þ b13n
2kþ b14n

3kþ b15k
4 þ b15k log nð Þ

þ b16k
5 þ b17k

2 log nð Þ þ b18k
3 log nð Þ þ error

The above model estimates the thresholds for the
GEWMAt for homogeneous counts and obtains an in-
control ATS of 100 ± 7 for 100 
 n 
 1000; 0:01 
 k 
 1
and a ¼ 0:10. The standard error of the model was 0.0007
and the correlation between the model-fitted values and the
corresponding actual simulated hDðkÞ values was 0.99999.

Simulation study results

Below, we provide tables for the simulation results
described in Section 5.
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