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ABSTRACT
In this expository article we give an overview of some statistical methods for the monitoring of social net-
works. We discuss the advantages and limitations of various methods as well as some relevant issues. One
of our primary contributions is to give the relationships between network monitoring methods and mon-
itoring methods in engineering statistics and public health surveillance. We encourage researchers in the
industrial processmonitoringarea toworkondevelopingandcomparing theperformanceof social network
monitoring methods. We also discuss some of the issues in social network monitoring and give a number
of research ideas.

1. Introduction

There has been an increasing amount of research on the moni-
toring of social networks. An overview of methods was given in
a recent review paper by Savage et al. (2014), who listed applica-
tions including the detection of important and influential net-
work participants, the detection of clandestine organizational
structures, and the detection of fraudulent or predatory activity.
One of our primary contributions is to add to the discussion of
Savage et al. (2014) by both including additional network moni-
toring papers and discussing the various methods in the context
of the considerable amount of related work in industrial process
monitoring and public health surveillance. Social networkmon-
itoring methods are often illustrated using terrorist networks,
such as the al Qaeda network (see Fig. 1) or social networks such
as that based on Enron e-mail communications (see Fig. 2).

The basic idea in social network monitoring is to detect sud-
den changes in the behavior of a subset of the individuals in the
network. Significant increases in the communication levels of
the entire network, of smaller sub-networks, or of individuals are
often of primary interest in applications, where global changes
are typically the easiest ones to detect. In some cases, however,
decreases in communication levels may be of interest. Savage
et al. (2014) referred to regions of the network whose structure
differed from that expected under normal conditions as anoma-
lies. Of course, to formalize what is meant by an anomaly, there
must be an operational definition of the normal conditions. The
definition of an anomaly would likely vary from application to
application. Networks are expected to evolve over time, how-
ever, so it would be unusual to have an interest in detecting that
any change, however small, has occurred. The focus is usually on
detecting sudden large changes in the structure of some portion
of the network.

We assume that there are n individuals in the network to
be monitored. These individuals could refer to people, e-mail
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addresses, or other entities. We assume that we are collecting
network data aggregated over some time period to give, for
example, daily or weekly data, with m time periods of data in
a baseline sample. For each time period t, t = 1, 2,…, we have
information on the communication level between individual i
and individual j, say ct(i, j), i, j = 1,…, n, where i is not equal to
j.Most oftenwe are interested in the number of communications
between individuals i and j. Alternatively, ct(i, j) may be an indi-
cator variable indicating whether or not there was at least one
contact between i and j or whether some other criterion on the
level of communication between these two individuals was met.
In the social network change detection literature, the numbers
of contacts between pairs of individuals are frequently modeled
by some variant of the Poisson distribution, whereas Bernoulli
randomvariables are typically used tomodel indicator variables.
Communication levels can be quantified as directed or undi-
rected. With directed data, ct(i, j) reflects only communications
between individuals i and j that were initiated by individual i,
whereas with undirected data, communications are considered
mutual, namely, ct(i, j) = ct(j, i). There can be a substantial loss
of information in transforming directed to undirected data, or
in representing communication counts by binary indicator vari-
ables. Indeed,with undirected data it is not possible to study how
contacts propagate through the network. Generally, as discussed
by Schuh et al. (2013), greater levels of data aggregation result
in greater losses of information and poorer process monitoring
performance.

The values ct(i, j) can be placed into row i and column j of
a matrix, say Ct, t = 1, 2,… The matrix Ct is typically referred
to as the adjacency matrix or graph corresponding to the social
network at time t. These matrices are usually quite sparse and
are assumed to have their diagonal elements set to zero so
that the graph contains no self-loops. Note that if the data are
undirected, then the matrix Ct is symmetric. Thus, the network
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Figure . Illustration of terrorist network. From Krebs ().

monitoring problem can be framed as the detection of certain
types of changes inmatrices of indicator variables or counts over
time. This is a broad generalization of the framework usually
considered in the many papers on the monitoring of Bernoulli
or count data. The vast majority of the methods for such data
studied in the literature on statistical process monitoring are
univariate and thus could be applied directly only to a network
consisting of two individuals.

As reviewed by Szarka and Woodall (2011), there has been
much research on themonitoring of sequences of Bernoulli data.
In addition to its diagonal of zero elements, Ct will be a matrix
of Bernoulli random variables in network monitoring applica-
tions where ct(i, j) = 1 if there was at least one contact between
individuals i and j or some other criterion wasmet and zero oth-
erwise. This represents a substantial multivariate generalization
of the usual univariate framework.
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Figure . Illustration of three snapshots of Enron e-mail networks in (a) , (b)
, and (c) .

Themonitoring of a single streamof Poisson-distributed data
has been widely studied. He et al. (2012) provided a review
of methods for monitoring a zero-inflated Poisson distribu-
tion. Purdy et al. (2015) reviewed methods for monitoring non-
homogeneous Poisson processes. Monitoring with multivariate
Poisson vectors has been studied by Laungrungrong et al. (2011)
and He et al. (2014), among others, but no one has studied the
monitoring ofmatrices of Poisson counts in the industrial statis-
tics literature.

Li et al. (2012) and Yashchin (2012) proposed methods for
monitoring categorical data, which can be considered in some
cases to consist of matrices of counts but not with the same
matrix structure or the same objectives as in network moni-
toring. It is frequently assumed in the study of public health

surveillance methods, however, that each sample of disease
incidence counts consists of a set of assumed Poisson ran-
dom variables that could be viewed as components of a matrix.
Sometimes these counts apply to a rectangular set of sub-regions
of a larger region of interest. Scan methods, such as those of
Kulldorff (2001), are frequently used with this type of data to
detect clusters of contiguous sub-regions where the Poisson rate
seems significantly higher than expected. A primary difference
between this problem and that of network monitoring is that
location can provide a natural ordering of the sub-regions in
public health applications. There is usually no natural ordering
for individuals in a network.

There has been considerable work on themonitoring of com-
puter networks; see, for example, Neil et al. (2013). In their
review, Savage et al. (2014) pointed out that the structure of
social network data is usually different from that of computer
networks and that the objectives are typically different. In addi-
tion, computer network monitoring involves considerably more
data collected at a much higher frequency and with much
more pronounced periodic patterns than with social network
data. Newman and Park (2003) provided a discussion of the
differences between these two types of networks. The social
network monitoring literature seems to have been developed
somewhat independently of the computer network monitoring
literature.

In the Appendix we give a brief introduction to social net-
work terminology. Section 2 contains our review of social net-
work monitoring methods. In Section 3 we discuss some issues
related to network monitoring. Conclusions and a number of
research topics are given in Section 4.

2. Monitoringmethods

In this section we briefly describe some of the recent meth-
ods proposed for monitoring social networks and relate them
to methods in the area of statistical process monitoring.
We use categories corresponding roughly to those used by
Savage et al. (2014). These four categories were also used in the
review paper by Unkel et al. (2011) to classify prospective pub-
lic health surveillance methods. We assume that the reader has
some familiarity with statistical process monitoring methods.
For more information on these methods, we recommendMont-
gomery (2013).

2.1. Control chart and hypothesis testingmethods

We believe that concepts and methods in statistical process
monitoring can be used to greater advantage in social network
monitoring. One of these concepts, the distinction between the
retrospective analysis of baseline data (Phase I) andmethods for
prospective on-goingmonitoring (Phase II), is discussed in Sec-
tion 4.1.

In their papers, McCulloh and Carley (2008a, 2008b, 2011)
and McCulloh et al. (2008) used monitoring methods such as
the CUMulative SUM (CUSUM) and Exponentially Weighted
Moving Average (EWMA) charts to detect changes in the
network as a whole. For information on these two types of
charts, we recommendHawkins (2014). They focused on detect-
ing changes in the communication behavior in military units.
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Global network metrics, such as average closeness and average
betweenness, were used as time series input to the charting
methods, but it was pointed out that node or sub-network met-
rics could have been used instead. McCulloh and Carley (2011)
stated that five or more network graphs should be used to estab-
lish a baseline. Current research by Saleh et al. (2016) and oth-
ers shows, however, that many more network graphs would
have to be available in order to estimate the baseline parame-
ters so that the resulting control chart performance would be
reliable.

Azarnoush et al. (2016) proposed amethod to detect changes
in the behavior within and between specified sub-networks with
the incorporation of covariate information. For example, in a
university environment the sub-networks could correspond to
departments and faculty rank could serve as a covariate. The
authors modeled the probabilities of contacts between pairs of
individuals in the network using a logistic regressionmodel with
sub-network membership and covariate data on the individuals
used as explanatory variables. A likelihood ratio test was pro-
posed to detect changes in the logistic regression model fitted
with each new graph. The authors proposed three approaches.
One is referred to as the static reference approach, where each
new graph is compared to those in a fixed baseline Phase I sam-
ple. In the dynamic reference approach, each incoming graph
is compared to all previous graphs. If there is no signal of an
anomaly, then the current graph is entered into the baseline for
the next graph to be observed. The third approach is referred
to as the dynamic reference sliding window approach, where the
current graph is compared to only themost recent q graphs, with
q being the size of the moving window. Azarnoush et al. (2016)
stated that the choice of approach depends on the objective of
monitoring, but we see the moving window approach as gen-
erally being the most useful, as networks tend to evolve over
time.

Some types of anomalies cannot be detected with the logis-
tic regression method of Azarnoush et al. (2016). In some cases
the number of contacts within a specified group within the net-
work can be redistributed into any configuration without affect-
ing the estimated regression coefficients or the likelihood ratio
test. We note that checking for changes in a logistic regression
model over time falls into the category of profilemonitoring. Yeh
and Huang (2011) reviewed some relevant methods for deter-
mining whether or not a logistic regression model has changed
over time.

Azarnoush et al. (2016) used simulation to compare their
methods to those of McCulloh and Carley (2011), where the
latter methods are based on global network metrics without
the incorporation of the available covariate information. It
would have been a fairer comparison, however, to base the
McCulloh and Carley (2011) methods on metrics correspond-
ing to the activity within each of the two assumed categories of
individuals.

Miller et al. (2013) proposed a method with assumptions
quite similar to those of Azarnoush et al. (2016) to detect spec-
ified types of network changes. Miller et al. (2013) used a log-
linear model for the probabilities of connections between pairs
of individuals; the reduced number of computations associated
with this approach allows their method to be used on much
larger networks. The monitoring approach proposed in Miller

et al. (2011) and Miller et al. (2013) is based on eigenvalues of
modularity matrices, first proposed by Newman (2006) for find-
ing community structure in networks. The modularity matrix is
the difference between Ct and the expected value of Ct, assum-
ing that edges occur independently. It can be thought of as a
residuals matrix. Miller et al. (2011) and Miller et al. (2013)
considered a window of network snapshots to calculate the dif-
ferences between observed and expected adjacency matrices.
The differences between the matrices were weighted with filter
coefficients based on the assumed known signal model. Instead
of only choosing the first eigenvector of the resulting matrix,
they picked the first two and projected the modularity matrix
onto the corresponding space. They assumed that if there is no
change, projected values should be randomly scattered (not clus-
tered) in any arbitrarily defined quadrant. In order to test this
hypothesis, they use a contingency test statistic in a 2 by 2 table
defined by the quadrant. If the test statistic is large, there is evi-
dence of change.

Miller et al. (2011) assumed that there is a known sig-
nal model, where the anomalous sub-graph behavior of inter-
est is known but its position within the background is not.
Their matched filter approach is very similar to the cuscore
approach of Box and Ramirez (1992), which Apley and Chin
(2007) showed was not effective at detecting delayed process
shifts.

In their first simulation, Miller et al. (2011) assumed that an
anomalous sub-graphdensity is fixed but the edges changedwith
each sample. In this case their approach gets better and better
as the window size increases. This is appropriate for hypoth-
esis testing, but large window sizes are not efficient for pro-
cess monitoring, due to the buildup of inertia. As discussed by
Woodall andMahmoud (2005), inertia can slowdown the detec-
tion of delayed process changes. Miller et al. (2011) assumed
in their second simulation that the density of the anomalous
sub-graph increased linearly over 32 samples. The filter coeffi-
cients were then set to be linearly decreasing with age from 1 to
0 over awindowof size 32. The problemwith theirmatched filter
approach is that one does not know when the signal (anomaly)
will occur. Miller et al. (2011) and Miller et al. (2013) assumed
a hypothesis testing framework, not on-line continuous Phase
II monitoring, and evaluated their methods using receiver oper-
ating characteristic curves assuming that any anomalies occur
immediately.

2.2. Bayesianmethods

Heard et al. (2010) proposed a two-stage Bayesian approach
to anomaly detection. Their goal was to detect anomalous
communication levels between pairs of individuals. Once these
pairs are identified, they are used to form a sub-network that
can then be analyzed for anomalous behavior. They assumed
either a Poisson conditional distribution or a hurdle Poisson
conditional distribution for the counts of contacts between pairs
of individuals. The hurdle model allows higher probabilities of
no contact in a way similar to the use of a zero-inflated Poisson
model. They used control limits based on a Bayesian predictive
distribution on the contacts between each pair of individuals,
in order to identify a subset of potentially anomalous pairs of
individuals. If an observed count is sufficiently far into the tails
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of the predictive distribution, as measured by a p-value, a signal
is given that there could be an anomaly. The predictive distri-
bution for the current count was based on the prior distribution
and all data up to, but not including, the current time. They then
used standard network inference tools on a smaller sub-network
based on the pairs of individuals identified as anomalous and
their contacts to identify anomalous network behavior. Heard
et al. (2010) used a p-value threshold of 0.05, which will lead to
many pairs of individuals falsely identified as anomalous in large
networks.

Heard et al. (2010) did not realize that a number of
researchers have proposed using control charts with the con-
trol limits based on Bayesian predictive distributions for qual-
ity control applications. These includeMenzefricke (2002, 2007,
2010a, 2010b, 2013), Bayarri and Garcia-Donato (2005), Saghir
(2015), and Raubenheimer and van der Merwe (2015). The pri-
mary way in which these methods differ is that only Heard et al.
(2010) and Bayarri and Garcia-Donato (2005) updated the pos-
terior distribution of the parameter of interest using all prior
data without a distinction between the retrospective analysis of
baseline Phase I data and the on-going real-time monitoring in
Phase II. In this sense, their approaches and the dynamic ref-
erence approach of Azarnoush et al. (2016) are closely related
to the use of the self-starting methods of Quesenberry (1991,
1995). The other researchers used predictive distributions based
on only the fixed set of Phase I data to determine the pos-
terior distribution of the parameter or parameters of interest.
Heard et al. (2011) pointed out, however, that for a longer-
term view, local models should be fit within shorter blocks of
time; i.e., a moving window version of their method should be
used.

2.3. Scanmethods

A number of researchers have proposed what are referred to as
scan-based network monitoring schemes. In a frequently cited
paper, Priebe et al. (2005) proposed a method for detecting
increases in communication levels based on the sizes of the kth-
order neighborhoods of each individual, where k = 0, 1, and 2.
The degree of an individual was referred to as the size of the
0th-order neighborhood. Standardized statistics were calculated
over time for each of the three metrics for each individual using
a moving window of a specified length to establish the base-
line mean and standard deviation. A lower bound of one was
used for the estimates of the standard deviation to avoid sig-
nals for relatively small changes in network behavior. A lower
bound of one for the estimated standard deviation is also used
in the Early Aberration Reporting System algorithm for moni-
toring count data used by the U.S. Centers for Disease Control
and Prevention in their BioSense program; see Hutwagner et al.
(2003), Tokars et al. (2009), and Szarka et al. (2011) for more
information.

With the Priebe et al. (2005) method, the maximum of the
three standardized network metrics at each time period is taken
over the set of individuals in the network. The signal rule is
based on these maxima. These maximum values are themselves
standardized based on the estimated mean and standard devi-
ation of previous maxima calculated over a moving window,
and a signal is given whenever a maximum is further than five

standard deviations from its estimated mean. Their method was
applied retrospectively to an Enron e-mail network, but it was
stated that their method can be used for prospective network
monitoring. We anticipate, however, that this method will be
able to detect quickly only very large network changes, due to
the use of the maximum of the standardized metrics. The stan-
dardized metrics corresponding to an individual could become
quite large, for example, without causing the maximum value to
take an unusually large value.

We note that the Priebe et al. (2005) method is not a
scan method in the sense of Kulldorff (2001) or Joner et al.
(2008). In these examples of more traditional scan meth-
ods, the monitoring statistics are based on counts in moving
temporal or spatiotemporal windows. The network moni-
toring scan methods are instead based on maximum values
of standardized deviations of metrics over moving windows,
where the maximum is taken over all of the nodes in the
network.

In their Bayesian method, Heard et al. (2010) updated the
estimates of the baseline parameter values after each time
period, whereas Priebe et al. (2005) based the comparison base-
line on a moving window of observations. Using a moving win-
dow approach allows the network behavior to evolve slowly over
time, without necessarily having a signal that a process change
has occurred. Heard et al. (2010), on the other hand, incorpo-
rated all data into the estimates of the level of the process to
which a metric based on the current sample is compared. The
moving window approach seems more reasonable to us. One
must keep in mind, however, that data reflecting undetected
network changes become incorporated into the baseline with a
moving window approach. This makes it more difficult to detect
an anomaly that is not detected as soon as it occurs. In addition,
moving window approaches will not continue to signal a sus-
tained anomaly.

In his scan-based approach, Sparks (2015, 2016) first ranked
the individuals in an attempt to have the more associated indi-
viduals closer to each other in the ranking.Once the rankingwas
made, a spatiotemporal scan approach was taken to identify any
anomalous sub-networks with increased communication levels.
One advantage given for the approach is its computational
efficiency compared with the infeasible approach of scanning
over the activity of all subsets of individuals of given sizes. One
concern with this approach is that communities within the net-
work may not be captured by the ordering of the individuals. In
addition, the network change to be detected may correspond to
sub-networks different from those captured by the ordering of
individuals.

Other scan-based approaches pointed out by Savage et al.
(2014) include a dissertation by Neil (2011), the ideas in
which were subsequently published in Neil et al. (2013). The
application was on computer network monitoring, however,
not social network monitoring. Other work involving scan
statistics included Park et al. (2009), McCullough and Carley
(2011), Marchette (2012), and Cheng and Dickinson (2013).
The approach of Marchette (2012) is closely related to that of
Priebe et al. (2011). McCullough and Carley (2011) claimed
to use a scan approach similar to that of Priebe et al. (2005),
but we find their scan method to be somewhat ambiguously
defined.
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Cheng and Dickinson (2013) combined the scan methods
of Priebe et al. (2005) with an analysis of cross-correlations
between the network metrics being monitored. The cross-
correlations were calculated based on the data in the moving
window, which does not include the most current observa-
tion. One concern regarding this approach is that the cross-
correlations do not necessarily provide any information on
anomalous activity that occurs with the current network graph.
Also, their use of average correlations can mask important rela-
tionships between pairs of metric time series. Finally, it does not
seem that they account for the fact that a correlation of a time
series with itself will always be unity.

2.4. Time seriesmodels

Savage et al. (2014) mentioned Pincombe (2005) as providing a
network monitoring method based on time series models. Time
series models can be fitted to time series of any network met-
rics. Unusually, large residuals indicate network changes. It is
important to note that this type of approach has been widely
used for process monitoring in public health surveillance and in
industrial and quality-related applications. Woodall and Mont-
gomery (2014) provided an overview of this area and cited sev-
eral review papers on the use of time series models in process
monitoring, including Psarakis and Papaleonida (2007). Unkel
et al. (2011) reviewed the use of time series approaches in public
health surveillance.

2.5. Other approaches

Many methods have been proposed in the network analysis lit-
erature for detecting changes in network structure or behavior
over time with specific goals in mind. Examples include detect-
ing fraudulent accounts, detecting unusual events affecting net-
work behavior, and detecting change in community structure. A
complete review of these methods is not feasible, but we briefly
discuss some of this work in this subsection.

Cazabet et al. (2010), for example, proposed a method for
identifying changes in community structure over time where
the identified communities could possibly overlap. As data are
obtained, previously identified communities are updated and
new communities can be identified.

As another example, Chae et al. (2012) proposed a method
for detecting abnormal events quickly, such as a mass shoot-
ing or an earthquake, using social media data that incorporate
spatiotemporal information. The approach involves decompos-
ing the data based on seasonal trends, in conjunction with con-
trol chart methods based on a moving window of values to find
unusual peaks and outliers within topic time series. In a related
paper, Altshuler et al. (2013) developed a method for detect-
ing an extraordinary event using the timing and traffic within
a network and assuming no knowledge of the content of the
messages.

In addition, Egele et al. (2013) proposed a method for identi-
fying compromised user accounts by building behavioral pro-
files for the users. Their method involves looking for groups
of accounts that all experience similar changes within a short
period of time. Their method was illustrated using Twitter and
Facebook datasets. Takahashi et al. (2011), on the other hand,

proposed a method for detecting emerging topics from social
network streams based on thementioning behavior of the users.

3. Some issues in social networkmonitoring

3.1. Phase I versus Phase II

In statistical process monitoring, it is important to distinguish
between Phase I and Phase II. Phase I includes methods for
understanding process behavior based on a fixed baseline set
of data. In-control parameter values for appropriate models are
estimated in the retrospective Phase I and used to design meth-
ods for on-going prospective monitoring in Phase II. In Phase
II, we make a decision about the stability of the process rela-
tive to the Phase I baseline as each sample is collected over time.
Phase I issues and methods were discussed by Jones-Farmer
et al. (2014).

Generally it would seem to be more difficult to obtain a base-
line of stable network data, however, than it would be to obtain
such data in a much more controlled industrial environment.
Thus, we see a greater need for the use of moving window
approaches, which would be inappropriate for industrial pro-
cess monitoring, due to industrial processes not being allowed
to wander or evolve.

Savage et al. (2014) referred to methods of network anomaly
detection as being either “static” or “dynamic.” For static net-
work methods, the time order of contacts is ignored with all
data aggregated over time. We consider it useful to also dis-
tinguish between Phase I dynamic methods to be used on a
set of historical data with time order preserved and Phase II
dynamic monitoring performed on-line as each new matrix of
counts is observed. Generally, the methods used for the analysis
of Phase I data differ from those used in Phase II. Quick detec-
tion of process changes is important in Phase II, for example,
but irrelevant in the analysis of Phase I data. Thus, EWMA and
CUSUM methods are often used in Phase II, whereas change-
point and outlier detection methods are commonly used in
Phase I.

3.2. Use of computer simulation

We agree with Savage et al. (2014) that methods need to be com-
pared based on simulated networks. McCulloh and Carly (2011)
also pointed out the usefulness of simulation studies. Anoma-
lies can be modeled in the simulated datasets and methods can
be compared on the basis of their ability to detect the anoma-
lies. There is a substantive literature in the statistical modeling
of networks that offers a diverse number of random graphmod-
els that may be helpful in this endeavor. For example, see the
recent review by Goldenberg et al. (2010). There are advantages
in using parametric statistical models for the networks so that
multiple graphs can be generated to represent a baseline and
so that anomalies can be simulated by changing the parame-
ters corresponding, for example, to contacts between individuals
within a sub-network. Ideally, one should use realistic networks,
but the use of simplified networks would likely provide valuable
insights on the relative performance of competing methods. If a
method is not effective in detecting changes in simple networks,
it will be unlikely to be effective with more complex networks.
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Decisions are required on the number of individuals in the net-
work, the grouping of individuals into sub-networks, the type
of covariate information, if any, and the type of anomaly to be
detected.

In their simulation, Azarnoush et al. (2016) assumed a
given logistic regression model for the probabilities of contacts
between pairs of individuals. They assumed that covariate data
were available on the individuals; i.e., the data were labeled.
Miller et al. (2013) also used simulation to study the detection
performance of their method. In his simulations, Sparks (2015,
2016) assumed that the numbers of contacts between individu-
als were Poisson distributed.

3.3. Distributional assumptions

Tomodel a network parametrically requires some distributional
assumptions. It is sometimes assumed that the number of com-
munications between pairs of individuals is Poisson distributed.
The mean of the Poisson distribution can vary depending on
the sub-group membership of the individuals; see, for example,
Sparks (2015, 2016). Heard et al. (2010) used a hurdle variant
of the Poisson distribution to account for an increased proba-
bility of no communication between two individuals in a given
time period. Savage et al. (2014) stated, however, that social net-
work communication count distributions typically have heav-
ier tails than those associated with the Poisson distribution.
The use of Bayesian models can yield negative binomial dis-
tributions for the counts. The negative binomial distribution,
frequently used in public health surveillance, can be used to
model counts that are overdispersed relative to the Poisson
distribution.

Poisson-distributed numbers of contacts for individuals
result from the random graph approach of Erdős and Rényi
(1960) under the assumption that contact between any two
specified individuals can be represented by a Bernoulli random
variable with a constant probability. As pointed out by Miller
et al. (2013), the degree distribution follows a power law dis-
tribution for many networks, in which case scale-free random
graph models, such as the preferential attachment model of
Barabási and Albert (1999), can be used. Another option is the
degree-corrected stochastic blockmodel of Karrer andNewman
(2011).

In their computer simulations, Miller et al. (2013) and
Azarnoush et al. (2016) assumed that there was covariate infor-
mation on the individuals in the network. The probability of
a link between any two individuals was modeled using log-
linear modeling and logistic regression, respectively, in their
approaches.

We do not support the use of the binomial model by Vigliotti
and Hankin (2015). They proposed breaking each of the time
periods for which we are obtaining the matrices Ct into dis-
joint increments, assuming that the probability of at least one
connection between two individuals in each increment is a
fixed value π . Thus, the sum of these Bernoulli random vari-
ables is a binomial random variable. The issues regarding
how to divide the interval into increments and the estima-
tion of π , however, were not addressed. In addition, if more
than one contact is made between individuals in a single time

increment, there would be a loss of information with their
approach.

To simulate networkswith parametricmodels, some assump-
tions about dependence structure are needed. As a start, it seems
reasonable to assume independence of theCtmatrices over time.
If a method works poorly under this assumption, it would be
unlikely to work well under a more general model.

3.4. Performancemetrics formonitoring schemes

We require metrics in order to compare the performance of
network monitoring methods in computer simulation studies.
The standard performance metrics in quality control applica-
tions are based on the run length distribution, where the run
length is the number of samples of observations until a signal is
given that a process change has occurred. Typically the Aver-
age Run Length (ARL) is used. One would like for the ARL
to be suitably large when the process is stable and low when a
process change occurs. McCullough and Carley (2011) defined
an average detection length metric that is equivalent to the
ARL.

The ARLmetric is useful when a change in the process is sus-
tained until it is detected. If a change to the network is tempo-
rary, however, then amore reasonablemetric is the probability of
detecting the process change while it is in effect. This is referred
to as the probability of correct detection. A general discussion of
this and other performance metrics was given by Frisén (1992)
and Fraker et al. (2008).

In assessing performance in detecting a process change, it
can be assumed that the process change happens at either the
time when monitoring begins or the time at which the change
is delayed. Metrics under these two scenarios are referred to as
being zero-state and steady-state, respectively. Generally, steady-
state performance metrics are preferred in statistical process
monitoring, as process changes are frequently delayed and some
methods have a good zero-state performance but poor steady-
state performance; see, for example, Sego et al. (2008).We expect
that the performance of the method of Miller et al. (2011) and
Miller et al. (2013) will not be as good for delayed network
changes as it is for network changes that occur whenmonitoring
begins.

In addition to quick detection of network anomalies, the indi-
vidual or individuals involved in the anomaly may need to be
accurately identified. This is analogous to being able to iden-
tify the correct geographical region of an outbreak in public
health surveillance applications. Appropriate metrics include
the percentages ofmisclassified individuals or the use of ametric
such as the Dice similarity coefficient proposed by Dice (1945)
and used by Megahed et al. (2012) in an image monitoring
application. It may also be important to determine the time at
which an anomaly first occurred. Amiri and Allahyari (2011)
reviewed the statistical process monitoring literature on identi-
fying the time of a process change after a signal that a change has
occurred.

With large networks, methods may tend to identify one or
more individuals or sub-networks as being anomalous at each
time period. In these cases, the ARL metric is no longer useful.
Metrics such as the false discovery rate would then be needed
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based on the ideas of Benjamini and Hochberg (1995) and Ben-
jamini and Yekutieli (2001).

We note that the use of performance metrics is required in
order to compare the performance of competing methods in
simulation studies. Practitioners, however, should not expect to
be able to design monitoring methods such that performance
metrics will take specified values; e.g., having an in-control ARL
of 100. As illustrated by Saleh et al. (2015), it is not possible to
have enough baseline data to accomplish this objective, even in
the much simpler univariate case of monitoring the mean of a
variable assumed to have a normal distribution.

4. Research opportunities and conclusions

We believe that the monitoring of social networks is an impor-
tant application and research area with abundant opportunities
available. We agree with McCullough and Carley (2011) that
social network change detection represents an exciting new area
of research.

The following are some research topics of interest:
1. We agree with Savage et al. (2014) that there is a need to

evaluate and compare the performance of existing meth-
ods. As they point out, most authors simply illustrate
their proposed methods based on case study datasets.
One cannot reliably compare performance of methods
based on case study results, as one rarely knows whether
or not any detection is a false alarm. In addition, a
method tailor-made for a specific case study may per-
form poorly in other applications. Comparisons of exist-
ing methods would likely spark ideas for new meth-
ods. It is better if new methods are scalable to large
networks.

2. We also agree with Savage et al. (2014) that research is
needed to provide guidance on the selection of the most
effective network metrics to monitor in order to satisfy
the objectives of the monitoring.

3. Many of the approaches used are of the Shewhart-type, in
that the decision regarding whether or not an anomaly is
present is based on each set of graph information indi-
vidually as it is obtained; see, for example, Azarnoush
et al. (2016). McCulloh and Carley (2008a, 2008b) advo-
cated use of CUSUMand EWMAmethods based on net-
work metrics. We would expect that the CUSUM and
EWMAmethods would have better detection capability,
but performance comparisons are needed.

4. Study is needed on the effect of aggregation over time on
the monitoring of networks. This would be a generaliza-
tion of the work of Schuh et al. (2013). We expect that
detection of anomalies will become more difficult with
increasing levels of aggregation, especiallywithBernoulli
data. In addition, study is needed on the effect of the loss
of information in considering Bernoulli data instead of
the numbers of contacts between individuals. We antic-
ipate that reducing count data to Bernoulli data could
result in a significant loss of information and a greatly
reduced ability to detect network anomalies, particularly
as graph data are aggregated over longer time intervals.

5. Is itmore efficient to identify individuals with anomalous
behavior and then analyze the resulting sub-network (as
in Heard et al. (2010)) or is it better to search over sub-
networks directly by monitoring kth-order neighbor-
hood data corresponding to each individual (as in Priebe
et al. (2005))? We anticipate that the latter approach will
be more effective, as the structure of the sub-network
formed by individuals with anomalous behaviormay not
necessarily be anomalous.

6. We encourage further investigation of monitoringmeth-
ods based on monitoring the eigenvalues of modularity
matrices. It is important to clarify what types of network
changes are not detectable with use of a specified number
of eigenvalues.

7. The use of false discovery rate approaches seems appro-
priate for methods based on the simultaneous use of
many charts, such as the method proposed by Heard
et al. (2010). Woodall and Montgomery (2014) listed
several papers on the use of the false discovery rate
approach in process monitoring, in addition, see Gandy
and Lau (2013). Some of the network monitoring
methods—for example, those by Heard et al. (2010) and
Vigliotti and Hankin (2015)—are already p-value based
with a concern over the high number of false posi-
tives, so use of a false discovery rate approach seems
promising.

8. Additional methods are needed that incorporate covari-
ate information about the network or the contacts. This
could include labels that categorize individuals into
groups, the length or size of the message constitut-
ing the contact, and the time of any contact. Savage
et al. (2014) referred to the monitoring in this case as a
search for dynamic labeled anomalies.Miller et al. (2013)
and Azarnoush et al. (2016) seem to be the only ones
thus far to have proposed methods for monitoring with
attributed (or labeled) data.

9. Most often the graph count data are not smoothed over
time. Moving window methods are used instead. Sparks
(2015, 2016), however, smoothed the count data using
exponential smoothing to build in temporal memory. It
is not clear which approach is better.

10. With moving window approaches, what should the
length of the window be in a given application?
Azarnoush et al. (2016) used moving windows of sizes
4 and 10, whereas Priebe et al. (2005) used a window
length of size 20. Also, it seems that it may be possi-
ble to improve performance by lagging the window by
not including a specified number of the most recent
graphs.

11. There will likely be seasonal effects in network data;
e.g., day of the week effects or holiday effects. Seasonal
effects could be identified using Phase I data. Sometimes
the effect of this variation can be removed by aggregat-
ing over the data over time; e.g., aggregation of daily
data by weeks. Seasonal effects are common in public
health monitoring applications, so some public health
surveillancemethods could likely be adapted for usewith
network data.
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12. Methods must be adapted for evolving networks to
account for new individuals entering the network and
for individuals leaving the network. These events can
trigger signals of network change that are not likely of
interest.

13. As a quality monitoring research topic, a comparison is
needed between Bayesian control charts based on pre-
dictive distributions and the self-starting control chart
approaches.
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Appendix A

A short tutorial on network terminology

In this section, we present some common network terminol-
ogy relevant to social network monitoring and analysis. In
the context of social monitoring, networks provide a natural
means to model the communication patterns among a group
of individuals. A network, or graph, G = (V, E) is a mathemat-
ical object with two major components: a vertex set V where
each vertex, or node, represents an individual and an edge set
E that is a subset of V × V that contains all pairs of ver-
tices (i, j) such that there is an edge between nodes i and j.
Figure A1 illustrates a small network with 12 nodes and 16
edges. In social networks an edge exists between two individu-
als forming a link provided there is at least one contact between
them or some other criterion on the communication level is
met. Information about the edges is contained in the adjacency
matrix.

The nodes or the edges of a graph may be labeled so that
a label specifies some quantitative or qualitative attribute for a
node or edge; e.g., the number of contacts between the indi-
viduals. The nodes themselves could be labeled with names or
e-mail addresses. Edges of an unlabeled graph for a social net-
work contain no information other than the presence of a link.
If the graph is directed, then relationships are asymmetric and an
edge (i, j) represents a directed communication from individual
i to individual j. If the graph is undirected, then which individ-
ual initiated the communication is unspecified. A graph is said
to be simple if it does not contain multiple edges between ver-
tices or any edge that starts and ends at the same node. The order
of the graph G is the number of vertices n, and the size of G is
the number of edges that it contains, denoted by |E|. When the
communication between two individuals is discrete-valued, one
also specifies a collection of edge weights {w(i, j): 1 � i, j � n} so
that w(i, j) represents the number of communications between
individuals i and j.

The degree of a node i is the number of edges incident to i;
i.e., the number of nodes with communications involving node

i. The degree of a node i is also referred to as the degree centrality
of that node.

Simple directed graphs with n nodes can contain a total of
n(n−1) possible edges, whereas simple undirected graphs with
n nodes can contain only

(n
2

)
possible edges. The edge density of

a graph is the ratio of the size of the graph to the total number
of possible edges.

A sub-network or sub-graph Gs = (Vs, Es) of G is a graph
whose vertex set Vs is a subset of V and whose edge set Es con-
tains all edges shared among the vertices in Vs. In the context
of social network monitoring, one often seeks a sub-graph of
an observed graph at some time t, such that the vertices in the
sub-graph have a significantly increased or decreased rate of
communication at time t. In Section 2 we reviewed methods for
detecting such network changes.

A special case of a sub-graph is an ego-net, which consists of
a particular node (called an ego) and the nodes (called alters)
that are connected to the ego, as well as any edges among
the alters. For example, in Fig. A1, the nodes {3, 4, 6} and
the three edges connecting them forms an ego-net for node
3. This ego-net is also a clique, a sub-network in which there
is at least one contact between all pairs of individuals in the
sub-network.

In many cases, we are interested in the paths between two
nodes in a graph. The shortest path between two nodes i and j is
the collection of vertices and edges such that there is a path from
i to j along the collection and the collection contains the fewest
number of edges. The closeness centrality of a node i quantifies
how close i is to the remainder of the graph using shortest paths.
In particular, it is the inverse of the sum of the shortest distances
from i to all other nodes in the graph. In a directed graph, the
minimum directed path length between nodes i and j is the num-
ber of directed edges in the shortest path between i and j. For
example, the minimum directed path length between nodes 2
and 9 in Fig. A1 is two, as the shortest path between the two
nodes is 2–8–9. Betweenness centrality for a particular node is
the average of the proportions of shortest paths between pairs
on nodes that include the node of interest. Eigenvector central-
ity is another measure of the influence of a node in a network.
It assigns relative scores to all nodes in the network based on
the concept that connections to high-scoring nodes contribute
more to the score of the node in question than equal connec-
tions to low-scoring nodes. Google’s PageRank is a variant of
the eigenvector centrality measure (Page et al., 1999). The var-
ious network metrics can be calculated for each individual or
averaged over sub-networks or averaged over the entire net-
work. These metrics can be monitored over time as discussed in
Section 2.1.

In undirected graphs, the transitivity of a graph is the ratio
of the number of closed triplets of vertices to the total num-
ber of triplets. Note that a triangle contains three closed triplets.
In Fig. A1, nodes {3, 4, 6} form a closed triplet, whereas nodes
{10, 0, 1} form an open triplet. The neighborhood of a node
i is the collection of vertices that share an edge with i. More
generally, the kth-order neighborhood of a node i is the collec-
tion of vertices within k edges of i. For example, in Fig. A1
the second-order neighborhood of node 0 is the collection
{1, 7, 8, 9, 10}.
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Figure A. Illustration of a small network with  nodes and  edges. Created using GraphTea software.

Figure 2 illustrates an example of a labeled, undirected net-
work whose structure changes over time. This figure shows
three snapshots of Enron e-mail networks in (a) 2000, (b)
2001, and (c) 2002. Circles represent those in managerial lev-
els, squares represent other employees and traders, and the rect-
angle shows the in-house lawyer. Different colors also represent

different roles in the company. As can be seen from Fig. 2(b), the
e-mail communication network became denser in 2001 when
the Enron scandal occurred. Also, the level of e-mail commu-
nications between the in-house attorney and managers signifi-
cantly increased in 2001.
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