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challenging task, and many models are intractable even for moderately sized systems.

Keywords: In light of these challenges, a family of dynamic network models known as varying-
Exponential random graph model coefficient exponential random graph models (VCERGMs) is proposed to characterize
Temporal graphs the evolution of network topology through smoothly varying parameters. The VCERGM
Basis spline provides an interpretable dynamic network model that enables the inference of temporal
Pseudo likelihood heterogeneity in dynamic networks. Estimation of the VCERGM is achieved via maximum

Penalized logistic regression pseudo-likelihood techniques, thereby providing a computationally tractable strategy for

statistical inference of complex dynamic networks. Furthermore, a bootstrap hypothesis
testing framework is presented for testing the temporal heterogeneity of an observed
dynamic network sequence. Application to the U.S. Senate co-voting network and
comprehensive simulation studies both reveal that the VCERGM provides relevant and
interpretable patterns and has significant advantages over existing methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Networks have been extensively used to explore, model, and analyze the relational structure of individual units,
or actors, in a complex system. In a network model, nodes represent the actors of the system, and edges are placed
between nodes if the corresponding actors share a relationship. In many applications, the relationships among the actors
of a modeled system change over time, necessitating the use of dynamic networks. Two diverse examples, which we
analyze later in our application study, include the Congressional co-voting networks in Fig. 1 and resting state brain
connectivity networks in Fig. 2. A prominent way to analyze relational network systems is through the use of probabilistic
models, or graphical models, which describe the generative mechanism of an observed network. Although there is a rich
body of literature on graphical models for static networks (Fienberg, 2012; Goldenberg et al., 2010), the development of
interpretable and computationally tractable models for dynamic networks is in its early stages.

An important feature of dynamic networks that needs to be captured in any statistical model is the extent to which its
local and global features change through time. We refer to this property as temporal heterogeneity. Heterogeneity directly
affects the underlying process that best describes the formation of networks. In parametric models, heterogeneity may
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Fig. 1. US. Senate co-voting network: Co-voting networks of U.S. senators in Congress 40, 70 and 113. Red nodes represent Republican Senators
and blue nodes represent Democratic Senators. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) Time 10 (b) Time 20 (c) Time 47

Fig. 2. Resting state fMRI network: Resting state fMRI network at observed times 10, 20 and 47. Each node represents a brain region. The top 10%
of partial correlation between regions forms an edge.

result in significant changes in parameters that characterize the observed network. Consider the U.S. Senate co-voting
network shown in Fig. 1. One can readily observe an evolution of the network to form distinct clusters of Republicans and
Democrats by the 113th Congress. This configuration is in stark contrast with the sparse, seemingly random configuration
formed in the 40th Congress. On the other hand, the resting state functional magnetic resonance imaging (fMRI) network
shown in Fig. 2 remains fairly stable through time with only minor local changes in edge formation. These contrasting
examples exemplify the need to explicitly model the heterogeneity of a network. We further analyze these dynamic
networks in Section 6 and Appendix F.

In this paper, we propose a probabilistic model for dynamic networks called the varying-coefficient exponential
random graph model (VCERGM). The model parameterizes time-varying topological features of dynamic networks in
continuous time. Our model builds on two major statistical methodologies. One is the exponential family of random
graph models (Holland and Leinhardt, 1981; Wasserman and Pattison, 1996) that characterizes the marginal effect of
local and global network features on the likelihood of the network. The other major component is a varying-coefficient
specification (Hastie and Tibshirani, 1993), which flexibly models the changes of effect parameters over time. The
VCERGM characterizes the temporal heterogeneity of dynamic networks by modeling the parameter associated with each
topological feature as a smooth function of time.

One prominent advantage of the VCERGM is its interpretability. By quantifying temporal heterogeneity of a network
via fluctuating parameters, we are able to analyze key properties of the local and global features of a dynamic network. In
addition to serving as a means to test for heterogeneity of a dynamic sequence, our method can also be directly used for
interpolation of missing networks or edges. For networks at unobserved time points, our method provides robust estimates
that reflect the structure of the unobserved networks without being strongly influenced by outliers in the sequence.
Furthermore, estimation of the VCERGM can be done with a computationally scalable maximum pseudo-likelihood
estimation (MPLE) approach, enabling efficient inference for large dynamic networks.

There are several related dynamic network models that have been investigated. The exponential random graph model
(ERGM) is a family of probability distributions on unweighted static network. The ERGM has been adapted to dynamic
networks in the pivotal work of Hanneke et al. (2010). The method is called the temporal exponential random graph model
(TERGM). The TERGM models the difference in topological features between every two consecutive networks in a similar
fashion to the ERGM. However, it ignores the heterogeneity of the differences, and cannot fully capture the time-varying
patterns of the network structure. We investigate the situations under which the TERGM degenerates to a collection of
independent and identically distributed ERGMs in Appendix A.

The TERGM has been further investigated in many different perspectives. Guo et al. (2007) devised the hidden TERGM,
which utilizes a hidden Markov process to express the nature of rewiring networks and model a time-specific network
topology. Krivitsky and Handcock (2014) generalized the TERGM to the separable TERGM (STERGM). The STERGM models
the formation and dissolution of networks by separately parameterizing prevalence and duration of fluctuations. It allows
time-varying overall rate of tie formation and dissolution while retaining homogeneous parameters for the other terms.
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Almquist and Butts (2014) relaxed the temporal Markov and fixed vertex set assumption of Hanneke et al. (2010) and
demonstrated a parametric model for temporal networks via dynamic network logistic regression.

The VCERGM, like the TERGM and ERGM, is a network-centric model. In other words, the VCERGM does not explicitly
model individual changes in a network; rather, the focus is to characterize motifs or subgraph properties. An alternative
to this modeling approach is what is known as ego-centric analysis, where individual change is the focus. Perhaps the
most popular ego-centric modeling strategy is the stochastic actor-oriented model (SAOM) (Snijders, 2001). It provides
an alternative to dyadic models and instead is a localized actor-based model, which characterizes network evolution as
a consequence of each actors’ connectivity. Even if the SAOM considers the fluctuation between two time points, it does
not provide explicit form to parameterize the fluctuation in network topology. Sarkar and Moore (2005) and Sewell and
Chen (2015) generalized the latent space model developed by Hoff et al. (2002) to dynamic networks. Unlike our current
model, latent space models characterize the dynamics of network structure through random effects in a latent space.

Another recent ego-centric model is that proposed in Hoff et al. (2015), where dynamic networks are modeled using
multilinear tensor regression. This work adapted autoregressive models to dictate temporal dependence in a sequence
of networks, and like the SAOM, proposed an actor-based dependence structure between edges in each network. It
directly models the temporal heterogeneity but may not be adequate for larger networks due to its computational
complexity. Kolar et al. (2010) consider capturing time-varying attributes of dynamic networks and parametrizes the
evolving relationship of each edge between nodes as a smooth function of time. Along with kernel smoothing approach,
the ¢;-regularization is utilized to ensure the smoothness. The parameters in the model provide a valuable intuition in
understanding the topological change of each edge, but fitting this model for larger networks can be computationally
expensive considering the number of parameters.

As an alternative, the proposed model exploits a varying-coefficient framework to model the temporal heterogeneity
of topological features. The varying-coefficient framework is a family of semi-parametric models, where the coefficient
of a parametric model evolves with some characteristics in a nonparametric fashion. It was first developed to model
non-linear effects of covariates on real-valued response variables (Hastie and Tibshirani, 1993). Later it was extended to
the dynamic generalized linear models (Hoover et al., 1998; Zhang et al., 2015). The varying-coefficient models extend the
classic parametric models to understand the dynamic pattern of temporally evolving structure (Fan and Zhang, 2008). A
detailed review of varying-coefficient models and their applications are provided in Fan and Zhang (2008). In our proposed
model, we model the coefficients of the topological features in the ERGM as a function of time. As a result, the varying
coefficients effectively capture the dynamic pattern of the network structure. To our best knowledge, the VCERGM is the
first attempt to generalize the idea to dynamic networks.

2. Model

We begin by describing the exponential family of random graph models (ERGMs) and their temporal extension, the
TERGM, since our proposed model is closely related to these specifications. We then introduce our proposed model the
VCERGM.

2.1. Temporal exponential random graph models

Let the n x n random matrix X represent an unweighted network with n vertices, whose (i, j)th entry Xj; is an indicator
that specifies whether or not node i and node j are connected by an edge. Self-loops are not allowed, and thus the diagonal
elements of X are all zero. Let X denote the family of all n x n unweighted networks so that X € X. The ERGM is
a probability distribution that characterizes the likelihood of X via a function of network statistics h : X — RP that
describe the topological structure of X.

Given h, the ERGM models X as a binary random matrix generated from the following probability mass function

exp{¢'h(x)}
> exp(¢'h(z))

zeX

PX =x|¢)= (M

where ¢ € RP parameterizes the influence of the network statistics h(X) on the likelihood of X. The coefficient
corresponding to the number of triangles in an undirected network, for example, characterizes how the number of
triangles changes the likelihood of a network with n nodes. Positive coefficients suggest that networks with a higher
number of triangles are more likely to occur than networks with lower number of triangles, and reflects clustering in the
observed network.

The ERGM has been successfully applied in a wide variety of fields, ranging from social networks to brain connectivity
networks (Goodreau et al., 2009; Simpson et al., 2011; Székely et al., 2016). Recent tutorials of exponential random graph
models and their applications are provided in Cranmer and Desmarais (2011), Fellows and Handcock (2012) and Robins
et al. (2007). Despite their popularity, an important obstacle that arises in discrete exponential family model specification
is the problem of degeneracy, a condition under which only a few network configurations - usually very sparse and very
dense networks - have high probability mass (Handcock et al.,, 2003; Rinaldo et al., 2009; Schweinberger, 2011). The
issue of degeneracy strongly influences the effectiveness of estimation algorithms, which often rely on Markov chain
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Monte Carlo simulation. In the case that nearly empty (or nearly complete) networks are most probable, estimation
via MCMC will fail to converge to consistent parameter estimates. A common strategy to help mediate the degeneracy
problem is to use geometrically weighted network statistics, which downweight higher order statistics and reduces
the computational complexity of subgraph counting (Snijders et al., 2006; Hunter et al., 2008a; Wyatt et al., 2010).
Furthermore, the generalized exponential random graph model for networks with continuous-valued edge weights has
been shown to avoid likelihood degeneracy in common specifications (Wilson et al., 2017; Bhamidi et al., 2018).

We now describe the TERGM, a generalization of the ERGM that enables statistical inference of dynamic net-
works (Desmarais and Cranmer, 2012; Hanneke et al., 2010). Consider a temporally ordered sequence of networks

X = {Xy, X3, ..., Xr} that is observed at T discrete and non-overlapping time periods, where each graph X; € X from
X is unweighted, and observed for the set of vertices [n] = {1,...,n}. The TERGM is a generative model for X that
characterizes the conditional probability of X; given X; = {X; : s =1, ..., t — 1} via an exponential family of probability

distributions. Under the first order TERGM, X exhibits a one-step Markov dependence between sequential networks as
follows:

PXe =% | Xy =X ) =P(Xe = x¢ | Xe—1 = Xc—1). (2)

Under (2), one can fully specify the joint probability mass function of X by parameterizing the one-step transitions from
X:_1 to X;. One models these dependencies using a function of transition statistics g : X x X — RP. These statistics
represent the temporal potential over cliques across two sequential networks and can represent, for example, the change
in the clustering or the change in overall connectivity between each pair of networks. For a chosen g, the first-order
TERGM specifies the likelihood of X; | X;_ fort =2,...,T as

T
PO = X | X1 ) = PO = X, | Xy = 1i ) = i@ B0 X))
> exp(¢” gz, x 1)}

zeXx

(3)

where ¢ € RP parameterizes the influence of the transition statistics g(X;, X;_1) on the conditional likelihood of X, given
X:_1. Suppose that the marginal distribution P(X; = x; | ¢) is specified. The TERGM characterizes the joint distribution of
the dynamic sequence X by

T

BX=x|)=Fi =% | §)[[PX =2 | Xeo = 21, §). (4)
t=2

We note that in general if one is able to specify appropriate transition statistics, then the TERGM in (3) and (4) is readily
generalized to higher-order Markov dependency. Bootstrapped maximum-pseudolikelihood techniques are typically used
for estimation of the TERGM (Desmarais and Cranmer, 2012). Estimation can be carried out using the btergm software
package (Leifeld et al., 2018).

2.2. Varying-coefficient exponential random graph models

Let X = {X; : 0 <t < T} be a stochastic sequence of temporally ordered networks observed continuously up to some
time T > 0. At each time point t, X; € X represents an unweighted, directed or undirected network with time-invariant
size n. Our goal is to provide a dynamic network model for X that directly accounts for the temporal heterogeneity of its
local and global network structure.

The VCERGM consists of two components — (i) an ERGM representation for the marginal likelihood of each observed
network, and (ii) the coupling of networks over time via a varying-coefficient model, where the coefficients at time
t parameterize the marginal likelihood of the network X;. We first specify a set of functions h(x;) : X — RP for
t € [0, T], which quantify the p topological features of network x, with n nodes. Given h(x;) and the coefficient vector
@(t) = (p(8), ..., ¢p(t))T € RP, the marginal likelihood of X; at time t has an ERGM representation given by

exp{¢(t)"h(x,)}
>_zex exp{e(t)" h(z)}

A large collection of topological features can be used in the VCERGM. Traditionally, the network statistics are raw counts
of different features in an observed network, such as the number of edges (edge density), the number of triangles, or the
number of reciprocal edges in a directed network.

The coefficients ¢(t) in model (5) characterize the influence of the corresponding network statistics on determining
the network structure. By evaluating the coefficient at time point t € [0, T], we can write the marginal distribution of a
graph X; as described in model (5). When a dynamic network evolves gradually over time, it is reasonable to believe the
coefficients will also change gradually. In such a case, ¢(t) can be represented by smooth functions of t with continuous
second order derivatives over [0, T] (Ramsay, 2006). In the special case where all the separate functions in ¢(t) are
constant, the generative models underlying the dynamic networks are identical over time and the VCERGM reduces to a
family of marginally identically distributed ERGMs. In Section 4, we introduce a formal hypothesis testing procedure to
test the temporal heterogeneity of the coefficients.

P(Xe =X | ¢(t)) = X € X (3)
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2.3. Generalization to higher order varying-coefficient exponential random graph models

The VCERGM, in general, can be used to model the parameters describing the smooth transitions between consecutive
networks in time. Model (5) investigates the dynamics of coefficients for marginal network statistics without accounting
for temporal dependency. However, this model can readily be extended to networks with a Markov dependency like
that described by the TERGM. For any non-negative integer g, one can incorporate an order ¢ Markov dependency in the
VCERGM. We denote such a model as a VCERGM of order q (VCERGM(q)). We refer to model (5) as the varying-coefficient
exponential random graph model of order 0 (VCERGM(0)). For g > 1, one must specify summary statistics that couple the
dependence among q observed networks in the sequence. For example, when g = 1 we can model the one step transition
between X;_; and X, using a suite of statistics hy(x;, x;,_1) as

exp{@i () hi(Xe, xe—1))
2 zex €XP{ () Mz, xe—1)}

Here, h; is the temporal potential over cliques across two time-adjacent networks. For examples of transition statistics hy,
see Hanneke et al. (2010). In model (6), ¢,(t) = {¢p(t), k =1, ..., p} can be modeled as smooth functions that describe
the impact of the one-step transition statistics from x;_; to x;. Therefore, model (6) effectively captures the rate of change
of the temporal potential between sequential graphs rather than the rate of change of the marginal features as done in
this work. Considering the higher order dependency, one could use the VCERGM to predict the network structure in the
future based on the Markovian framework. Like the TERGM, we can generalize the VCERGM to a higher order Markov
dependency, say order q > 1, by specifying appropriate transition statistics hg(x;, X;—1, ..., Xr—q).

In general, the VCERGM(q) characterizes the impact of the changes of transition between g consecutive networks. Due
to the Markov properties, the VCERGM with lags can be used for prediction. Furthermore, since coefficients are smooth
functions through time, one can readily interpolate for unobserved networks. Notably, the TERGM of order q is a special
case of the VCERGM(q) where ¢,(t) = ¢,. This requirement greatly restricts the family of dynamic networks that can be
modeled through the TERGM. By allowing smooth fluctuations, the VCERGM models the effects of temporal heterogeneity
more efficiently.

PX; = X | @1(t), Xe—1) = , Xt € X (6)

3. Estimation
3.1. Spline-based representation of time-varying coefficients

Without any constraint, the collection of coefficients {¢(t) : 0 < t < T} contain an infinite number of parameters, mak-
ing inference on (5) intractable. To address this problem, we approximately represent these smooth functions as a linear
combination of basis functions. Possible strategies of defining basis functions include piecewise polynomials (De Boor
et al., 1978), Fourier series (Konidaris et al.,, 2011) and wavelets (Daubechies et al., 1992). For inferential purposes, we
employ basis splines (b-splines) (De Boor et al., 1978; Eilers and Marx, 1996) as a way to reduce the dimensionality of
estimation. B-splines are commonly used due to its flexibility in incorporating smoothing constraints.

In particular, we first specify a collection of basis functions B;(t), ..., By(t), 0 <t < T, and then approximate ¢(t) by
a linear combination of these functions

q
Bilt) =Y P By(t),
=1

where @, quantifies the contribution of the £th basis function on ¢(t). Let & = {®Py; k = 1,...,p, £ = 1,...,q}
denote the p x q basis coefficient matrix and let B(t) = (B4(t), ..., Bq(t))T be the length g vector of basis functions. We
can represent the coefficients ¢(t) as

#(t) = PB(t). (7)

The set of g basis functions represents the smoothness of ¢(t), and the coefficient matrix ¢ determines the shape and
trajectory of the fluctuations through time. Under the basis representation in (7), the distribution of X; in (5) is fully
specified by the pq parameters in the coefficient matrix &.

3.2, Fast estimation via maximum pseudo likelihood

For an observed dynamic sequence of unweighted graphs X = {x; € X : s =t1,..., tx, §j < tizq € [0, T]}, our goal is
to estimate the coefficients {¢(t) : 0 < t < T} given the sequence x. Let B, = {B;¢; £ = 1, ..., q} be a vector of length
q of which elements are the basis functions evaluated at time s. By applying the basis representation in (7), we denote
¢, = PB; as the smooth function ¢(-) evaluated at time s. Therefore, this estimation reduces to the task of estimating
the p x q coefficient matrix &. A major obstacle in obtaining the maximum likelihood estimators of the parameters
in Model (5), similar to that of fitting an ERGM, is that calculation of the normalizing constant in the denominator is
computationally intractable. Although numerical approaches such as the Markov chain Monte Carlo method can be used
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to estimate @ for small networks (Hunter and Handcock, 2006; Wilson et al., 2017), the computational cost is prohibitive
for moderate to large networks, let alone a sequence of networks. To alleviate the computational complexity, we exploit a
maximum pseudo-likelihood approach, originally adapted for fitting the ERGM (Strauss and Ikeda, 1990; Van Duijn et al.,
2009; Wasserman and Pattison, 1996). We show that the maximum pseudo-likelihood estimator (MPLE) for the VCERGM
can be efficiently obtained via maximum likelihood estimation of a logistic regression model. Below we describe the
estimation procedure in more detail.

For each observed time point s = tq,..., tg, let X,.j- denote the binary random variable that describes whether or
not there is an edge between node i and node j at time s. Furthermore, let X° i) be the collection of (g) — 1 binary
random variables that describe whether or not there is an edge between all other pairs of nodes other than the node pair

i and j. For each observed time point s = tq, ..., tg, assume the conditional independence between edges. The marginal
pseudo-likelihood function of @ given x; at time s is defined as
LBlx) = [ PO =X = X 5). (8)
ijeln]

Subsequently, the marginally independent composite pseudo likelihood of model (5) is

g

L PIx) = 1_[ ]_[ P(Xu _Xulx (i) =x (lj))

s=tq i,je[n]

The MPLE & is obtained by maximizing PL( @|x). The pseudo-likelihood approach used for estimation and hypothesis
testing treats pairs of edges as pairwise independent. As the temporal dependence is parametrized by the coefficient
¢(t), the composite pseudo-likelihood function can be written as a product of marginal pseudo-likelihood functions at
the observed time points tq, ..., ty.

Let x denote the realization of x; with x set to 1 and let x_, be the realization of x; with xs = 0. Define
AS = h( Xg u) h(x_ u) as the vector describing the element-wise dlfference in the network statistics when X5 i changes
from 0 to 1. One can readily show that for each s = t1, ..., tx, the following relationship holds for all i, j € [n]:

logit {P(X3 = 1|X° ., = x° ..)} = log mC) v
{ ij (i) (1) } ]P’( _ O|x—(u S—(ij))
= log [eXD{¢( ) (xS ) — h(x; ;)]
= ; A} 9)

Let Y = logit{P(X} = 1|X ;) = x° ;))} and let Ys = (Y}, Y},, ..., Y3 ). Similarly, define A; = (A3, A3,, ... 4;,) as

the p x (;) matrix whose rth row contains the change in the rth network statistic when each edge changes from 0 to 1.
Let vec(X) be the operator that stacks the columns of X into a column vector and let ® represent the Kronecker product

operator. Combining (7) and (9) yields

Y, = Al #B; = (B; ® A,)" vec(P),s=1,..., L. (10)
Let Y = (Y, ..., Yy)" and define the pg x K(3) design matrix H as
B, ® A
H=
B[K ® Afk

The relationship in (10) connects to a logistic regression where H represents a design matrix with its coefficient vec( ®).
In Strauss and Ikeda (1990), it was shown that maximizing the pseudo-likelihood PL( #|x;) in (8) is equivalent to finding
the maximum likelihood estimator (MLE) of @ in the logistic regression model given in (9) with independent entries X,;.
Dependency among nodes in a network can be indirectly modeled by conditioning on the rest of the edges. As a result,
the assumption of independent data points is not required. We expand this estimation strategy to temporal networks. It
follows from the independence of X; and Xy for s # s’ that maximizing PL( @|x) is equivalent to calculating the MLE of &
in the logistic regression model Y = Hvec( &) treating {X,; 1i,je[n],s =tq,...,tg} as mutually independent variables.
Correlation between neighboring time points is not explicitly specified, but the joint pseudo likelihood of dynamic
networks is defined by multiplying the pseudo likelihood for each observed time point. Qu and Li (2006) showed that
the estimation procedure for varying-coefficient models based on the penalized spline and quadratic inference function
directly incorporates the correlation across time without further specifying a nuisance parameter associated with the
correlation.

This maximum pseudo likelihood approach can be also applied to the VCERGM(q) in an analogous fashion. For
simplicity, we consider the VCERGM(1) with one-step Markov dependence. The conditional likelihood of graph X, given
X:—1 is specified as (5). For a collection of basis functions Bi(t), ..., By(t), 0 < t < T, we approximate ¢(t) by a linear
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combination of these functions as ¢1x(t) Zz 1 @1ke Be(t) and represent the coefficient ¢, (t) as a ¢, (t) = @1B(t), with
a p x q matrix of basis coefficients ;. The composite pseudo-likelihood functions for VCERGM(1) can be expressed as

t1 o Gh
o) = [T BoG = x5/ X =x0)
ijeln]
K
< [T TT B0G = %51% 5 = x5, Xom1 = x:-1).
s=tp i,je[n]

The likelihood of X;, has an ERGM representation and thus the marginal pseudo-likelihood at time t; is unconditional; it
has the same form as (8). Let AS = h(x“ ,Xs_1) — Xs_1) denote the vector of differences in the transition statistics
when x; ;; changes from 0 to 1. Then the relatlonshlp cfescrlbed in (9) can be similarly applied to VCERGM(1). A logistic
regression model like (10) is used for parameter estimation and thus the remainder of the estimation steps described
above remain the same.

3.3. Penalized logistic regression

To obtain smooth estimates of the time-varying coefficients ¢(t), we further consider a roughness penalty on the
coefficients of the basis functions (see Hastie and Tibshirani, 1993; Eilers and Marx, 1996; Hoover et al., 1998, for example).
A commonly used penalty, which we use throughout this paper, is the integrated squared second derivative defined for
kth row of &, denoted as P, as

P(Py) = /{D2¢k(u)}2 du= @(Tk) 2 P,

where a smoothness matrix 2 in this case can be specified as
2= (o= [wsewsua: ij=1.....q)

For networks observed at discrete time points tq, ..., tg, the (i, j)th element of {2 is

K

Q=Y (D’B(HD’Bi(s)}, i,j=1.....q.

s=t1

For more examples of possible penalties, see the Chapter 5 in Ramsay (2006). As the same collection of basis functions
are used to express ¢y(t), k = 1, ..., p, via basis representation, we impose the same {2 on all ¢,(t). Consequently, we
add the penalty term Pg( @) to the logistic log pseudo likelihood function where P ( @) is defined as

p
Po(P) = Z By 2 D) = vec( D) (2 @ I, )vec( P).

k=1
Similar with Y, let X denote a vector that stacks all edges from networks at ti, ..., tx. That is, X = {xs 1 i,j €
[nl,s = t1, ..., tg}. We calculate the penalized pseudo-likelihood estimator P, by maximizing the following penahzed
log likelihood with tuning parameter A:
x"H vec(®) — 17 log[1 + exp{H vec( $)}] — AP (D). (11)

To fit (11), we implement an iteratively reweighted least squares (IRLS) algorithm. A detailed description of this
procedure is available in Appendix B.

4. Testing for heterogeneity

A key assumption of the VCERGM is that the effects of a specified collection of statistics vary through time. This
assumption reflects heterogeneity in an observed sequence of graphs x and provides intuition as to whether or not
summaries of X can be treated in aggregate. One can formally test for heterogeneity in x using bootstrap inference the
observed sequence of networks. Bootstrap inference has recently received a lot of attention for uncertainty quantification
of network summaries. For example, Snijders and Borgatti (1999) applied a bootstrap to assess the variance of network
statistics in an observed network and demonstrated how to test differences between networks using t-test comparisons
of calculated network statistics. Recently, Akcora et al. (2019) developed a bootstrap inference strategy for uncertainty
quantification of estimators for node features in large networks. Here, we apply bootstrap inference on an observed
sequence of networks to test for temporal heterogeneity using a likelihood ratio test. Our approach is closely related
to the recent model selection strategy introduced in Chen and Onnela (2019).

We begin with a null hypothesis that x is homogeneous, namely that the coefficients ¢(t) under model (5) are fixed
as constants over time. This serves as the null model, under which the VCERGM(0) is equivalent to fitting independent
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and identically distributed ERGMs. Let ¢?, R ¢g be the estimates under the time-invariant model fitting. With fixed
constants ¢?, . .., 19' the null hypothesis corresponding to a homogeneous sequence of graphs can be written as

Ho : d1(6) = 6%, ... ¢plt) = 0. (12)

With basis spline (b-spline) setup of basis expansion (De Boor et al., 1978; Eilers and Marx, 1996), the basis functions
satisfy Zle Bi(t) = 1 for all t € [0, T]. As a result, any ¢y (t) is uniquely expressed as a linear combination of b-spline
basis functions and setting the function ¢y (t) = ¢>,? is equivalent to writing @, = qb,? forall £ =1, ..., q. In other words,
the null hypothesis in (12) can be expressed more succinctly as

T T
B =3=(¢).....90) x1,
where 14 is length g vector of 1's. Such simplification is applicable for spline basis functions and we have implemented a
hypothesis test with spline basis functions. The condition ZL Bi(t) = 1for all t € [0, T] does not necessarily hold when
other types of basis functions are used. Hypothesis test under other basis function specification remains to be explored in
the future. The coefficients under the null hypothesis are the restricted form of the VCERGM where the basis coefficients
for each network statistic are constants for all g basis functions.

The likelihood ratio test (LRT) is commonly used for conducting the test for heterogeneity in varying-coefficient
models (Cai et al., 2000; Fan et al., 2001; Fan and Zhang, 2000, 2008). Due to the dependence between entries in each
graph, we utilize a pseudo likelihood ratio test (pLRT) (Staicu et al., 2014). As previously emphasized in Section 3, the
joint pseudo likelihood consists of the distribution of X; given the rest of the data XS for alli,j e [nl,s=ty,..., .
Furthermore, maximizing the pseudo likelihood 51mp11f1es the estimation process as flttmg a logistic regression. Namely,
with observed networks X = {x; : s = tq, ..., tx} with n nodes, the pLRT compares the pseudo log likelihood function
below under the null and alternative hypotheses:

log PL( #|X) = Z Z log{P(X;; = XX = X))}

s=ty i,je[n]
tg
2> [xijsT ®" A — log{1 + exp(B! ¢TA,§.)}].
s=tq i,je[n]

Let @Ho and @Hl be the estimates of @ under the null and alternative hypotheses. The estimate @Hl can be calculated
by fitting the VCERGM specified in (5) and @y is the estimate from the VERCM with a restriction of constant basis
coefficients. Accordingly, let log PL( @yo|X) and log PL( &y;|Xx) denote the pseudo log likelihood functions under the null
and alternative, respectively. Then, the test statistic is

T = 2{log PL( fﬁm |x) — log PL( @Ho|x)}

AT
R 1+ exp(Bl &,,,A%)
= ZZ Z I:XU N 45]-{1 QH()) AS +10g{ > A?O J ]] (13)
s=t; ijeln] 1+ exp(BI &y, A})

We reject the null hypothesis when T > C, where C, is the critical value of the test with significance level «. We
introduce an approach that involves generating bootstrap samples to construct the null distribution of T (Cai et al,,
2000; Fan and Zhang, 2008; Huang et al,, 2002). It is s preferable for moderate network size. Analogous to the work
in De Brabanter et al. (2006), McLachlan (1987) and Tekle et al. (2016), the steps of obtaining the critical value C, or
calculating the p-value with parametric bootstrapping can be described as follows. For a large value of B, the test statistics
(13) calculated based on B bootstrap samples successfully represent the null distribution of T.

1. Create B bootstrap samples. For each bootstrap, indexed by b = 1,..., B, x*®) = {x:®)
from P(X| Pyyp). "
Ak

2. For each bootstrap sample x*?), estimate @ under the null and alternative hypotheses and denote them as &,

:S=ty,...,tg}is a sample

~ *(b) .
and @:” , respectively.
3. Calculate the test statistic for each bootstrap sample as

T"® = 2{log PL(&yy, |x'®) — logPL(&yyy X)), b=1,....B.

4. The critical value C, is determined as the (1 — «)th quantile of (T*(), ..., T*®)). The p-value is the proportion of
times that the bootstrap test statistic values exceed the observed test statistic T. Define an indicator function I(A)
which takes a value of 1 if A is true and 0 otherwise. Then the p-value can be written as

S (T < T*®)

-value =
p B
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Table 1

Simulation results: Proportion of cases that we reject the null hypothesis out of 100 simulations at the significance
level of @ = 0.05. Bootstrap samples of size B = 1000 and permuted samples of size P = 1000 are used to make a
decision for hypothesis testing.

M Bootstrap Permutation

K =10 30 50 70 100 K =10 30 50 70 100
0 0.02 0.03 0.07 0.01 0 0.03 0.04 0.03 0 0.01
0.05 0.15 0.36 0.46 0.59 0.71 0.07 0.29 0.49 0.63 0.73
0.1 0.42 0.77 0.91 0.93 0.97 0.32 0.82 0.98 0.99 1
0.15 0.74 0.98 1 1 0.99 0.52 1 1 1 1
0.2 0.98 1 1 1 1 0.63 1 1 1 1
0.25 1 1 1 1 1 0.87 1 1 1 1
0.3 1 1 1 1 1 0.97 1 1 1 1

The p-value is then used to determine whether or not to reject the null hypothesis. For values below a specified
significance value, «, one rejects the null hypothesis in (12) and decides that the sequence of networks does exhibit
heterogeneity in its parameters. In our applications below, we choose o = 0.05 when evaluating any hypothesis test.

5. Simulation study

The goal of our simulation study is two-fold: (i) to evaluate the power of the hypothesis testing procedure described in
Section 4 and (ii) to assess the goodness of fit of the VCERGM on dynamic networks with various magnitudes of temporal
heterogeneity. In Section 5.1, we evaluate the sensitivity of the hypothesis test in (12) for detecting temporal heterogeneity
in a sequence of networks with fluctuating parameters using both the bootstrap and permutation procedures. Section 5.2
assesses the performance of the VCERGM under various varying-coefficient specifications. We compare the performance
of the VCERGM with other competing methods. We further investigate how the VCERGM performs when the networks
are observed at unequally spaced time points due to missing networks. We explore the performance of VCERGM when
the network size is time-varying in Appendix D.

5.1. Power evaluation for testing heterogeneity

We first investigate the power of the hypothesis test for heterogeneity that we introduce in Section 4. To do so,
we investigate both Type I and Type II errors of the test on dynamic networks over various magnitudes of temporal
heterogeneity. We simulate 100 sequences of dynamic networks X = {Xy,...,Xj00}, Where each sequence x,, =
{Xw.1, - .., Xw}, contains K networks with 30 nodes observed at equally-spaced times ty, ..., ty under the VCERGM that
models the temporal contributions of the edge density statistic. We set the coefficient on the edge density term, ¢(t), to
be a sinusoidal curve with amplitude M and period T. In particular, we model

o(t) = Msin(?), t €[0,T].

We vary the number of observed time points K from 10 to 100, and the amplitude M from O to 0.3 in increments of
0.05. In case that M = 0, we set ¢(t) = 1, t € [0, T] to represent an Erdés-Rényi model. For each value of K and M, we
calculate the proportion of rejections at « = 0.05 level out of the 100 simulated dynamic network sequences. Table 1
reports these proportions when using the bootstrap procedure as well as the permutation test. For the permutation test,
instead of simulating networks from the estimated null, we simply permute the observed networks to break any time-
varying pattern, and re-estimate the model under the null and the alternative and then calculate the test statistics. We
learned that both testing strategies appear to be overly conservative. It is a valuable point we would like to address for
future research.

When M = 0, ¢(t) is a constant function and as a result the proportion of rejections in this case provides an estimate
for the Type I error of each test. From Table 1, we see that both strategies obtain a Type I error at or below 0.05, as desired.
For M > 0, the proportion of rejections provides an estimate of the power of the test. We see that for higher signal (larger
M) and for a larger number of observed networks (larger K), we obtain a higher power, as expected. Across K, we see in
general that the bootstrap procedure is consistently more powerful than the permutation procedure for each amplitude
value M. For M > 0.25 the power of both tests reaches 1, indicating that heterogeneity is successfully identified by both
tests. These results suggest that both tests are powerful for large enough signal size, and that the bootstrap procedure
slightly outperforms the permutation procedure for small signal sizes (between M = 0.05 and 0.20).

5.2. Estimation performance

We now evaluate the performance of VCERGM to accurately estimate fluctuating parameters ¢(t), t € [0, T]. We
consider four different settings for ¢(t): (i) sinusoidal curve ¢(t) = asin{(t + b)/c} + d of varying amplitude a;
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Table 2
Simulation results with 30 nodes and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute errors (IAE) for each
method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM
0 11.79 (11.76) 5.07 (1.05) 1428 (12.24) 6.54 (1.25)
o 1 12.41 (11.79) 5.35 (1.19) 14,63 (12.28) 7.13 (1.32)
Sinusoidal 5 18.63 (11.06) 12.92 (11.83) 5.67 (1.37) 20.99 (11.11) 14.55 (12.25) 7.6 (1.3)
10 12.89 (13.76) 5.44 (121) 13.87 (12.97) 7.53 (1.33)
0 2.87 (1.08) 2.86 (0.97) 3.07 (1.1) 3.19 (0.83)
. 1 2.9 (1.09) 2.87 (0.99) 3.16 (1.14) 3.22 (0.86)
Quadratic 5 6.33 (0.74) 3.13 (1.11) 2.98 (1) 8.58 (0.87) 3.38 (1.27) 3.38 (0.89)
10 329 (1.28) 3.05 (0.97) 3.56 (1.41) 3.52 (0.93)
0 6.92 (3.8) 5.93 (2.71) 7 (3.76) 6.06 (2.67)
i o 1 7 (3.86) 5.98 (2.76) 7.09 (3.83) 6.1 (2.75)
Erdds-Rényi 5 1417 (25) 7.09 (3.79) 6.06 (2.68) 15.91 (2.58) 7.14 (3.83) 6.17 (2.69)
10 7.11 (4.03) 6.15 (2.83) 7.28 (3.93) 6.35 (2.81)
0 32.32 (2.96) 3127 (0.35) 219 (4.46) 24.08 (0.93)
i 1 3225 (2.79) 31.16 (0.36) 21.86 (4.58) 22.65 (0.89)
Non-smooth 5 12.62 (6.53) 32.46 (3.47) 31.34 (0.45) 1588 (6.61) 22.19 (5) 22.48 (0.88)
10 32.63 (4.13) 31.42 (0.44) 2291 (6.14) 23.46 (0.92)

(ii) quadratic curve ¢(t) = a(t — T /2)? +b of varying strength g; (iii) dynamic Erdés-Rényi random graph with probability
p of edges; and (iv) non-smooth (spiky) functions as a form of a sequence of random numbers with varying mean and
standard deviation for normal distribution. For each setting of varying coefficients, we model the occurrence of graphs
using the VCERGM with edge density and reciprocity statistics. We simulate 100 dynamic sequences of directed graphs
{x1, ..., X100} where each sequence x,, = {X,, 1, ..., Xy 50} is observed at K = 50 equally-spaced time points. We assume
that the network size remains constant through time and consider estimation with networks of three different sizes
n = 30, 50, 100. Furthermore, we repeat (i)-(iv) with 1, 5, and 10 randomly chosen networks removed from the time
series to evaluate the performance on dynamic networks with observations missing at random.

5.2.1. Competing methods

For each simulated dynamic network, we compare the VCERGM with two other dynamic network models. First, we
fit cross-sectional ERGMs, where the ERGM in model (1) is fit separately at each of the K observed time points. As
an alternative competitive method, we also develop an ad hoc 2-step procedure, which adapts an ad hoc smoothing
procedure after fitting cross-sectional ERGMs for observed networks. Namely, let ¢(t) denote the estimate of ¢(t). The
ad hoc smoothing mechanism aims to find a smooth function f(t) that minimizes the penalized residual sum of squares
(RSS)

tk
RSS2 = D 1605) — F6)F + 4 [ U0,

s=t1

where A is a tuning parameter that controls the amount of roughness. The generalized cross validation (GCV) is used to
choose the tuning parameter A (Golub et al., 1979).

5.2.2. Performance metrics

To assess the performance of each method, we calculate the integrated absolute error (IAE) of the estimated coefficient
curves. It measures the sum of point-wise absolute difference between estimated curve ¢(t) and true curve ¢(t) at
observed time points tq, ..., ty, namely

IAE((1), B(1)) =D _ 1p(s) — d(s)I.

s=tq

The mean and standard deviation (SD) are calculated to evaluate the performance of our proposed method compared
to cross-sectional ERGMs and ad hoc 2-step procedure. We provide the summary of IAE for each method on dynamic
networks with 30 nodes in Table 2 with (0, 1, 5, 10) missing networks. Settings for the results are (i) sinusoidal curves
with (a, b, ¢, d) = (1, 30, 5, 1) (edges) and (a, b, c, d) = (0.6, 20, 3, 0.4) (reciprocity); (ii) quadratic curves with (a, b) =
(17202, 0) (edges) and (a, b) = (—1/252, 0.5) (reciprocity); (iii) Erdés-Rényi with Pedges = 0.85; (iv) a sequence of random
numbers from N(0, 1) (edges) and N(1.5,0.5) (reciprocity). The performances of cross-sectional ERGMs, ad hoc 2-step
procedure, and VCERGM become more comparable with larger network size. For results of n = 50 and n = 100 case, see
Tables C.5 and C.6 in Appendix C.
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Fig. 3. Parameter estimates with 30 nodes: Estimated parameters for edges (top) and reciprocity (bottom). Black line is the true ¢(t). Red (ERGM)
is for cross-sectional ERGMs, green (ERGM2) is for ad hoc 2-step procedure, and blue (VCERGM) is for VCERGM. For each method, solid line indicates
the average of 100 estimated curves and the shaded band illustrates the first and third quantiles. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5.2.3. Results

We first investigate the results of the methods when there are no missing networks. These results are presented
in Fig. 3. We find that cross-sectional ERGMs are more likely to introduce unexpected spikes or increased variability
in estimating true ¢(t), compared to VCERGM. Overall, the VCERGM estimates deviate less from the true ¢(t) and has
smaller variability compared to cross-sectional ERGMs and ad hoc 2-step procedure. In the first three functional types,
the VCERGM outperforms the cross-sectional ERGMs and ad hoc 2-step procedure. In the case of non-smooth functions,
the ad hoc 2-step procedure shows better performance than the VCERGM with respect to IAE. Both Table 2 and Fig. 3
indicate that the VCERGM potentially misses random deviations, which causes greater bias on average compared to
cross-sectional ERGMs. Despite this, the true non-smooth ¢(t) is well captured by the VCERGM, and the variability of
the VCERGM estimators are smaller than the coefficients for the cross-sectional ERGMs. The performance of ad hoc
2-step smoothing procedure is comparable with the VCERGM, but the VCERGM provides a more principled model for
incorporating time-varying coefficients.

For all four functional types, the VCERGM is computationally more efficient than the cross-sectional ERGMs. We
conduct an additional simulation study specifically tailored to compare the computing time between methods and the
results are presented in Tables 3 and 4 (see Fig. 3).

When there exist missing networks, cross-sectional ERGMs are no longer available to provide the estimates at
unobserved time points. Therefore, the IAE is calculated only for ad hoc 2-step procedure and VCERGM. Notably, the
performance of the VCERGM remains stable across each number of missing networks. Cross-sectional ERGMs and the
2-step approach, on the other hand, suffer more than the VCERGM in the case of missing networks. Indeed, as shown in
Table 2, the VCERGM outperforms these competitive methods in the case that observations are missing and is better able
to capture the true coefficient curve in these cases.

In order to compare the computational efficiency, we vary the number of time points K and the number of nodes
n and record the computing time for VCERGM and cross-sectional ERGMSs. Table 3 summarizes the computing times of
100 simulated dynamic network sequences of 30 nodes and displays how computing time changes as the number of
time points K changes. Similarly, Table 4 shows the distribution of computing times of 100 simulated dynamic network
sequences for varying number of nodes n in temporal networks with 30 time points. The maximum pseudo-likelihood
approach is used for both ERGM and VCERGM estimation.

According to Table 3, the VCERGM takes significantly less time than cross-sectional ERGMs to complete the parameter
estimation. Even if both VCERGM and cross-sectional ERGMs show a linear increase in computing time, the rate of change
is much smaller for VCERGM. Both methods entail K separate steps to construct design matrix and response vector at each
time point, but the cross-sectional ERGMs require K separate MPLE steps while VCERGM only needs one estimation. In
other words, the longer the time series of networks are, the more efficient VCERGM is compared to cross-sectional ERGMs.

Table 4 shows a consistently shorter computing time for VCERGM compared to cross-sectional ERGMs. For both
VCERGM and cross-sectional ERGMs, the increment in computing times is almost linear up to temporal networks with
100 nodes. As the network size gets bigger than 100, the computing time increases exponentially, and the difference in
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Table 3
Computing Time: Summary (Mean(SD)) of computing time (second) for dynamic networks with different number of
time points K.

Number of time points K

20 40 60 80 100
ERGM 1.35 (0.07) 2.64 (0.08) 3.83 (0.13) 5.08 (0.10) 6.35 (0.17)
VCERGM 0.95 (0.07) 1.83 (0.09) 2.69 (0.14) 3.41(0.12) 4.37 (0.11)
Table 4
Computing Time: Summary (Mean(SD)) of computing time (second) for dynamic networks with different number of
nodes n.
Number of nodes n
20 40 60 80 100 200 500
ERGM 1.84 (0.11) 2.35(0.12) 3.20 (0.09) 4.31(0.12) 5.89(0.18) 20.46 (0.59) 224.73 (12.74)

VCERGM 121 (0.08) 166 (0.06) 224 (0.07) 3.15(0.09) 425 (0.14) 1453 (048)  179.09 (11.11)

mean computing time between VCERGM and cross-sectional ERGMs for temporal networks with 500 nodes is close to
1 min.

6. Application to U.S. congressional co-voting behavior

We apply the VCERGM to analyze how the co-voting patterns among U.S. Senators have changed through time. We
analyze the effects of political affiliation (Republican or Democrat) on the likelihood of the voting networks. We first
test for temporal heterogeneity of any statistic included in the model using our bootstrap procedure from Section 4.
We compare the VCERGM with cross-sectional ERGMs and the ad hoc 2-step procedure described in Section 5.2.1 We
furthermore compare these with estimates from the TERGM model with the same specified statistics for comparison.

6.1. Data and model specification

This dynamic network that describes the co-voting patterns among U.S. Democrat and Republican Senators from 1867
(Congress 40) to 2015 (Congress 113). Three of the voting networks are shown in Fig. 1. This network was first investigated
in Moody and Mucha (2013) and has been subsequently analyzed in Wilson et al. (2019). The network is based on the
roll call voting data from http://voteview.com, which contains the voting decision of each Senator (yay, nay, or abstain)
for every bill brought to Congress. We model the co-voting tendencies of the Senators using a dynamic network where
nodes represent Senators and an edge is formed between two nodes if the two Senators vote concurringly (both yay or
both nay) on at least 80% of the bills to which they were both present. We note that we exclude Independent Senators
for this analysis.

As shown in Fig. 1, there are noticeable fluctuations in the co-voting network structure over time. Previous analyses in
Moody and Mucha (2013) and Wilson et al. (2019) have identified significant changes in the community structure of the
network over time, and that this community structure is closely associated with the political affiliation of the Senators.
To model these fluctuations, we include a mixing matrix effect that counts the number of edges among Senators with
the same affiliation as well as the number of edges between Senators with different affiliations. We also include the
geometrically weighted edge shared partners (GWESP, decay = 1) and geometrically weighted dyadic shared partners
(GWDSP, decay = 1). The GWESP statistic measures the extent to which two senators who are tied share connections
with other senators. The GWDSP statistic captures the extent to which each pair of Senators shares similar ties.

6.2. Model estimates and analysis

The estimated parameters from (i) cross-sectional ERGMs (ERGM), (ii) ad hoc 2-step procedure (ERGM2), (iii) VCERGM,
and (iv) TERGM are presented in Fig. 4. Notably, all five network statistics exhibit temporal heterogeneity. The permutation
test p-value for testing heterogeneity is < .001. Like we found in the simulation results, the cross-sectional ERGMs
exhibits spiky estimates, but the ad hoc smoothing recovers the lack of smoothness efficiently and produces similar
estimates as the VCERGM. We note that the TERGM coefficient estimates from the btergm package are averages of
the coefficient estimates from the cross-sectional ERGM. As explained in Desmarais and Cranmer (2012) and Leifeld
et al. (2018), the reason for this averaging behavior of the TERGM is the btergm package identifies the maximum
pseudo-likelihood estimator for the coefficients in the sequence of graphs, which turns out to be the same as taking
the average coefficient estimate across independent ERGM models with the same coefficients. In comparing the VCERGM
with competing methods, we see that the coefficient estimates from the VCERGM are smooth functions across time that
simultaneously account for the heterogeneity of the coefficients as well as avoids outliers.
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Fig. 4. Parameter estimates of political networks: Coefficient estimates for the VCERGM, cross-sectional ERGM (ERGM), the ad hoc smoothing
approach to the ERGM (ERGM2), as well as the TERGM.

The political mixing matrix effect parameter estimate reveals an important trend in the political network. We see that
the coefficient value for this term generally increases over time, suggesting that political affiliation has had a growing
importance in co-voting behavior over time. This increasing pattern in the coefficient across affiliations reflects that the
number of ties formed with the same political affiliation positively influences the likelihood. We notice that since the
increase has been particularly evident since Congress 95, which matches the current theory of “political polarization”
described in Moody and Mucha (2013).

Fig. 4 reveals that the GWESP coefficient remained positive and relatively stable over time until Congress 107. This
trend suggests that the clustering of Senator votes positively influences the formation of the co-voting network. At
Congress 107, the GWESP coefficient estimate greatly increased. This closely aligns with the notable polarization of
Republicans and Democrats starting in the Clinton administration, which has also been noted in previous studies (Moody
and Mucha, 2013). The GDWSP coefficient remained negative and relatively stable over time. This, in combination with
the GWESP results, supports the claim that the connection of two Senators has a positive influence on having shared
partners and suggests that their political alliances were formed over history. These findings suggest that the U.S. Senate
transitioned from an “individual centric" network, where central figures influenced the voting habits of the Congress, to a
“party centric" network in which political affiliation was the primary determinant of voting habits. This finding augments
the empirical work in Moody and Mucha (2013).

6.3. Goodness of fit

We next assess the within-sample accuracy of the VCERGM through a goodness of fit study. To assess goodness of
fit, we follow the strategy established in Hunter et al. (2008b), described as follows. First, for the tth network x; in the
observed sequence, we calculate the marginal coefficients ¢(t) from the results of the VCERGM. We then simulate 100
networks with parameters ¢)(t) using Markov chain Monte Carlo as described in Hunter and Handcock (2006). We calculate
a family a summary statistics for each of the simulated networks and compare the distribution of these statistics with
the true observed value of the statistic for x,. We did this comparison for each of the statistics in the model - triangle,
two-star, and node-mix terms — as well as several statistics not included in the model, including an edges term and a
geometrically weighted edge shared partners (GWESP) and geometrically weighted dyad shared partners (GWDSP). Our
goodness of fit results are plotted in Fig. 5.

Fig. 5 does not appear to suggest any systematic bias in the simulated network statistics. Indeed, the dynamic trend of
the simulated networks closely matches the trend of the statistics in the true dynamic sequence. To test this, we calculated
the correlation between the median of network statistics from the simulated networks and the true observed value. The
range of calculated correlations is between 0.76 and 0.98. This is particularly reassuring, as pseudo-likelihood estimation
for static ERGMs may lead to biased parameter estimates for small networks (Strauss and Ikeda, 1990; Van Duijn et al,,
2009). We note that there are some time points at which the simulated networks do not closely match the observed
Republican to Republican mixing matrix effect and GWESP terms. These time points correspond to congresses where the
smoothed coefficient estimates of the VCERGM tend to differ from the jumpy nature of the cross-sectional ERGM estimates
as seen in Fig. 4.

7. Discussion

In this paper, we introduce varying-coefficient models for dynamic networks. In particular, we described the formu-
lation and estimation of the VCERGM, a model that incorporates temporal changes in the coefficients of an exponential
random graph family of models. We demonstrated the advantages of applying the VCERGM over competing methods
through simulations and two dynamic network case studies. First, the VCERGM provides an intuitive explanation of how
a network changes through time. Both the cross-sectional ERGMs and ad hoc 2-step procedure seemed to capture the
temporal heterogeneity in a sense. However, by incorporating the temporal heterogeneity in the modeling step, the
VCERGM provides a compact and meaningful model to formally explain the temporal structure of dynamic networks.
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Fig. 5. Goodness of fit of the VCERGM on political networks: Estimated coefficients from the VCERGM were used to simulate 100 networks for
each observed time point. The distribution of each network statistic (log transformed) is shown for each Congress. The log of true observed statistics
of the co-voting network are shown with solid lines.

Second, the VCERGM is robust to perturbations in observed temporal data. By imposing smoothness on the coefficients,
we are able to provide robust estimates that are resistant to outliers and noise. Third, the VCERGM enables interpolation
for missing networks through time. In practice, one can only observe a finite number of networks in a dynamic sequence,
which may be observed in unequally spaced time increments. Estimates of the coefficients to the VCERGM can be
evaluated at any time point in the domain and immediately interpreted as the impact of network statistics at that time
point. By presenting the results with unequally-spaced networks, we illustrated how the varying-coefficients through time
can be useful especially in terms of interpolation.

Our work provides several avenues for future research. First, it is important to consider the evaluation of goodness
of fit and model selection in a dynamic context. Through empirical exploration, we found that the network statistics
used to fit a model are often highly correlated. For example, if there exists a triangle in a network, it is more likely to
find two-stars in the network. Model identifiability should be investigated both in static ERGM models and the VCERGM
to ensure appropriate model selection. For static ERGMs, one generally assesses goodness of fit through a comparison of
quantitative summaries of simulated networks from the fitted model with the summaries of the observed network (Hunter
et al., 2008b). However, for dynamic networks this type of goodness of fit comparison captures only the marginal aspects
of the dynamic sequence. How exactly to assess the quality of a dynamic model is still an open problem. A second avenue
for future work involves adapting the varying-coefficient framework introduced here to networks with weighted edges.
To do this, one can extend the exponential models of networks for integer-valued weights from Krivitsky (2012) or to the
models of networks for continuous-valued weights considered in Desmarais and Cranmer (2012), Wilson et al. (2017),
Stillman et al. (2017) and Stillman et al. (2019).

We discussed a maximum pseudo-likelihood approach for parameter estimation. This strategy provides a computation-
ally feasible approach to fitting dynamic networks with a large number of nodes or time steps, especially when compared
to the typical simulation-based MCMC-MLE approach. There have been several studies exploring the relationship between
the pseudo-likelihood and the likelihood of the ERGM, including Strauss and Ikeda (1990), Desmarais and Cranmer
(2012), where the efficacy of MPLE was empirically compared to MCMC-MLE. More recently, Schmid and Desmarais
(2017) compared the performance of MCMC-MLE and MPLE and empirically supported the accuracy of MPLE. Despite
this, theoretical support for MPLE is still lacking and is an open area for future research.

In many dynamic networks, it is often of interest to identify change-points in the network, namely points in time
where the network undergoes significant local or global structural change (Woodall et al., 2017; Bindu and Thilagam,
2016). It would be interesting to further analyze how to utilize dynamic network models like the VCERGM to identify
such changes. The test for heterogeneity that we use in the paper may provide some idea of how to formally test for
a change — through the identification of a change in network parameter. We plan to pursue this idea further in future
research.
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Appendix A. Stochastic equivalence under the difference statistic specification

Comparing the first-order TERGM with model (1), we see that the TERGM is closely related to the ERGM in that it
characterizes the conditional distribution of X; given X;_; using an ERGM representation. Perhaps not surprisingly, these
two models are much more closely related than this relationship.

Consider a simple univariate time series represented by the stochastic process Z = {Z1, ..., Zr} for Z; € R. Without
any other information about Z, a natural non-parametric manner to investigate the rate of change in Z involves analyzing
the difference between sequential observations Z;_; and Z;, namely analyzing A(Z;) = Z; — Z;_,. The analysis of A(Z;) in
univariate and multivariate time series is known as differencing, and is a common first step in the analysis of time series
data (Brockwell and Davis, 2013). In the context of the TERGM, differencing corresponds to the analysis of difference
statistics, where one specifies transition statistics of the form

8(xe, X—1) = h(x;) —h(x; 1), t=2, ..., T, (A1)

where h : X — RP is a topological summary of an input network with n vertices. Statistics of the form in (A.1) can
capture, for example, the differences in the edge weight of the network from time t — 1 to t, or the difference in the
number of triangles from one network to the next. Although incorporating difference statistics in the TERGM is a natural
first-step in the analysis of temporal networks, it turns out that doing so is equivalent to modeling each network X; € X
as an independent realization from the same exponential family probability mass function. This is made precise in the
next proposition.

Proposition 1. Let X denote the family of unweighted dynamic graph sequences on n vertices with T > 1 discrete observations.
Suppose that X = {Xy, ..., Xt} € X is generated under the TERGM in (3), where fort =2,...,T

eXP{d’T 8(xe, Xe—1)}
> expi¢’ gz, x 1))

zeXx

Xe | Xy ~ PXe =X | Xem1 = X5 @) =

Suppose g(-, -) € RP is a difference statistic of the form (A.1) where g(x,y) = h(x) — h(y) for some h(-) € RP. Then for all
t > 2, X; is independent of X; and can be generated as an independent realization of an ERGM with the following probability
mass function

T
Xt|xpr(xt=x|¢)=m.

> exp(¢'h(2))

zeXx

Proposition 1 reveals that under the difference statistic model specification, a dynamic network under the TERGM
reduces to an independent and identically distributed sequence of graphs under a corresponding ERGM. Hence under this
family of specifications, the TERGM does not capture temporal dependence in the underlying dynamic network sequence.
Although in practice one may utilize statistics that are not of the form (A.1), this relatively simple example motivates
further investigation between the relationship of the ERGM and the TERGM.

Appendix B. Iterative reweighted least squares (IRLS)

The penalized logistic regression problem for fitting a VCERGM is to maximize the following penalized log likelihood
function:

x"H vec(®) — 17 log[1 + exp{H vec( $)}] — APo( D). (B.1)

The tuning parameter A controls the amount of roughness. We implement the iteratively reweighted least squares (IRLS)
to fit the logistic regression with the penalty term. Consider a link function g(u) = log(x/(1 — w)) and a convex function
b(n) = log(1 + e). The IRLS without penalty term updates & at the (u + 1)th iteration

vec( @) = (H'WH)'H' W™ {Hvec( $™) + (x — p™) - g'(n")}, (B.2)

where p™ = b'(Hvec($™)) and W™ is a diagonal matrix with

1 1
(u) | —
W= , i=1,2,...,(pxq).
(@.0) b”(H(Ti)VEC( W)) {g/(pL(u))}2

i
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Table C.5
Simulation results with 50 nodes and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute errors (IAE) for each
method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM
0 424 (2.89) 4.06 (2.8) 462 (123) 435 (1.05)
o 1 482 (2.89) 445 (2.82) 5.05 (1.23) 4.89 (1.06)
Sinusoidal 5 7.84 (2.05) 558 (283) 491 (23) 8.53 (0.99) 563 (12) 546 (1)
10 5.19 (2.77) 443 (2.63) 5.42 (1.46) 5.32 (1.1)
0 1.84 (0.96) 1.89 (0.91) 1.76 (0.63) 2.06 (0.46)
. 1 1.91 (0.93) 1.93 (0.89) 1.82 (0.64) 2.08 (0.49)
Quadratic 5 38 (0.62) 2.12 (0.87) 2.05 (0.83) 5.06 (0.57) 2.04 (0.69) 2.19 (0.53)
10 22 (0.93) 2.12 (0.82) 2.09 (0.67) 231 (0.58)
0 428 (381) 421 (37) 3.17 (1.94) 3.14 (1.4)
o 1 422 (3.82) 422 (37) 3.15 (1.95) 3.16 (1.39)
Erdds-Rényi 5 8.4 (262) 4.34 (3.75) 4.3 (3.65) 8.62 (143) 32 (2.01) 324 (1.45)
10 429 (3.58) 431 (3.48) 3.43 (2.06) 3.38 (1.35)
0 30.92 (0.28) 3021 (0.28) 19.68 (0.74) 2323 (1.01)
i 1 30.98 (0.3) 30.03 (0 29) 19.64 (0.76) 21.91 (0.84)
Non-smooth 5 5.77 (1.34) 30.81 (0.25) 30.12 (0.38) 7.9 (1.95) 19.75 (0.79) 21.64 (0.74)
10 30.62 (0.26) 30.24 (0.39) 19.85 (0.79) 23.01 (0.89)
Table C.6

Simulation results with 100 nodes and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute errors (IAE) for
each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM
0 17.81 (21.23) 17.74 (21.3) 7.61 (5.71) 7.5 (5.75)
o 1 18.4 (20.95) 18.28 (21.04) 7.9 (5.5) 7.85 (5.51)
Sinusoidal 5 18.48 (20.76) 18.95 (20.55) 18.81 (20.65) 8.44 (5.11) 8.26 (5.34) 8.22 (5.38)
10 18.3 (20.78) 18.07 (20.97) 8.23 (5.45) 8.07 (5.51)
0 8.59 (13.16) 8.67 (13.12) 2.44 (2.53) 256 (2.33)
. 1 8.61 (13.09) 8.66 (13.06) 2.49 (2.52) 259 (2.33)
Quadratic 5 9.14 (12.84) 8.58 (12.96) 8.6 (12.95) 3.53 (1.95) 2.59 (2.42) 2.68 (2.27)
10 8.63 (12.97) 8.65 (12.95) 2.6 (2.42) 2.67 (2.26)
0 2232 (28.11) 22.47 (28.01) 1.09 (0.53) 1.5 (0.4)
o 1 22.34 (28.11) 22.49 (28.02) 1.05 (0.54) 1.49 (0.39)
Erdds-Rényi 5 23.22 (27.46) 22.36 (28.08) 2255 (27.97) 361 (0.96) 1.14 (0.52) 1.59 (0.38)
10 22.36 (28) 22,52 (27.87) 1.3 (0.65) 1.73 (0.49)
0 32.92 (3.96) 306 (3.98) 26.48 (10.91) 2632 (9.67)
i 1 33.05 (3.97) 30.52 (4.01) 26.39 (10.8) 25.66 (9.94)
Non-smooth 5 10.95 (9.95) 3272 (3.92) 31.16 (3.99) 16.63 (15.89) 26.75 (11.08) 25.73 (10.39)
10 32.69 (4.06) 31.53 (4.02) 26.76 (10.99) 27.15 (9.7)

With the penalty term P(®), we only need to replace H' W®H by H'WWH + A (2 ®1,) in (B.2). The generalized cross
validation (GCV) is used to choose the tuning parameter A (Golub et al., 1979). Namely, the A is a minimizer of G(A), which
is defined as

2
G(A) = —||x H(H'H + N2.02) 'H'X| /{:]tr(I—H(HTH—i-NA.Q)_lHT)} ,

where N is the number of rows in matrix H.

Appendix C. Additional simulation results

Tables below show the mean and standard deviation of IAE associated with fitting ERGMs and VCERGMs to temporal
networks of size 50 and 100 with 0, 1, 5, and 10 randomly missing networks. The results are from the settings (i) sinusoidal
curves with (a, b, c,d) = (1,30, 5, 1) (edges) and (a, b, c,d) = (0.6, 20, 3, 0.4) (reciprocity); (ii) quadratic curves with
(a, b) = (1/202, 0) (edges) and (a, b) = (—1/252, 0.5) (reciprocity); (iii) Erdés-Rényi with Pedges = 0.85; (iv) a sequence
of random numbers from N(0, 1) (edges) and N(1.5, 0.5) (reciprocity).
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Table D.7
Simulation results with time-varying network size and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute
errors (IAE) for each method.

Missing Edges Reciprocity

ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM
0 13.79 (13.14) 4.99 (1.28) 16.54 (13.57) 6.72 (1.37)

_ 1 14.43 (13.16) 5.26 (1.37) 16.97 (13.43) 7.5 (1.33)
Sinusoidal 5 2063 (12.37) 1421 (13.21) 5.32 (1.47) 2277 (12.32) 163 (13.32) 7.98 (1.41)
10 14.86 (14.6) 532 (1.18) 15.58 (12.83) 7.81 (152)
0 272 (1.11) 2.47 (0.74) 3.06 (1.27) 3.14 (0.86)
. 1 279 (1.07) 2.56 (0.69) 3.15 (1.35) 3.16 (0.87)
Quadratic 5 6.48 (0.66) 3.1 (1.1) 2.82 (0.68) 8.95(1.02) 3.23 (1.24) 3.33 (0.93)
10 3.11 (1.1) 2.94 (0.78) 3.5 (1.49) 352 (1.02)
0 525 (2.43) 472 (1.39) 5.48 (2.57) 5.18 (1.52)
e pa 1 526 (2.51) 474 (1.42) 5.42 (2.47) 5.21 (1.54)
Erdds-Rényi 5 1452 (1.67) 5.4 (2.44) 4.9 (1.49) 16.24 (1.84) 554 (2.47) 5.41 (1.59)
10 551 (2.65) 5.12 (1.6) 5.83 (2.59) 5.71 (1.61)
0 31.84 (2.61) 31.84 (0.43) 14.65 (5.52) 21.08 (3.98) 2461 (1.25)
) 1 31.81 (2.47) 31.57 (0.41) 21.01 (4.03) 2335 (1.22)
Non-smooth 5 11.36 (5.46) 31.92 (3.11) 31.74 (0.45) 21.29 (4.42) 22.96 (1.23)
10 31.87 (3.46) 32.29 (0.58) 21.76 (5.21) 23.82 (1.27)

Appendix D. Estimation for networks with time-varying network size

In dynamic networks, networks at different time points may have differing numbers of nodes, making it inappropriate
to compare networks using un-normalized counts. Instead, one should standardize the network statistics to make them
comparable over time. We propose to standardize network counts by its maximal possible value. By using density
(proportion) instead of count, we can measure and compare the change in the ratio of certain network statistics when the
number of nodes is time-varying. For a directed binary graph X; with n; nodes, for example, edge density and reciprocity
can be defined as }, ; Xjj / {ne(ne — 1)} and 3~ i x; xﬂ-/("zf), respectively. Fitting a VCERGM to temporal networks is to
capture the evolution of connectivity pattern of overall relational data. Therefore, even if the network size is time-varying,
using standardized statistics enables us to detect the overall pattern as well as maintain the smoothness assumption of
#(t).

Let X, denote the all obtainable networks with n nodes, and define a set of functions h(x;, n;) : &, — RP for
t € [0, T], which quantify the p topological features of network x, with size n,. Given h(x;, n;) and the coefficient vector
o(t) = (pq(t), ..., ¢p(t))T € RP, the marginal likelihood of X; at time t has an ERGM representation given by

exp{¢(t)"h(x,, n,)}
D _zex, eXPIO(t) h(z, 1)}

We randomly vary the network size over time, simulate the networks with time-varying network size and (0, 1, 5,
10) randomly missing networks, and estimate the parameters. The results are from the settings (i) sinusoidal curves
with (a, b, c,d) = (1, 30, 5, 1) (edges) and (a, b, c, d) = (0.6, 20, 3, 0.4) (reciprocity); (ii) quadratic curves with (a, b) =
(1/202, 0) (edges) and (a, b) = (—1/252, 0.5) (reciprocity); (iii) Erdés-Rényi with Pedges = 0.85; (iv) a sequence of random
numbers from N(0, 1) (edges) and N(1.5, 0.5)(reciprocity) (see Table D.7).

P(X; = x; | (t)) = Xt € Xp,. (D.1)

Appendix E. Estimation with different number of basis functions

We vary the number of basis functions (5, 7, 10, 12, 15, 17, 20) and compare the performance of VCERGM in estimating
the smooth sinusoidal true ¢(t) from temporal networks with K = 50. There is no significant difference in estimation
performance when the number of basis functions is greater than 10 (see Fig. E.6).

Appendix F. fMRI dataset

We next analyze the structure of brain connectivity in the data provided by the WU-Minn Consortium Human
Connectome Project (HCP). The dataset is available at https://db.humanconnectome.org. See Van Essen et al. (2012) for an
overview of data acquisition and analysis. The dataset includes the resting-state functional magnetic resonance imaging
(rfMRI) of 500 subjects. For each subject, a 15-minute run of rfMRI is recorded. We set 47 local windows and calculate
a precision matrix between 50 brain regions based on observations within each window. For a transition from precision
matrices to a sequence of dynamic networks, we define the edge density of a network as the proportion of edges in the
network. Once the edge density is specified, the threshold can be determined to form an edge between brain regions.
With the edge density of 10%, for example, the greatest 10% of partial correlation values would form edges.
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Fig. E.6. Estimation with different number of basis functions: Estimated parameters for edges (top) and reciprocity (bottom). Black line is the
true ¢(t). The blue line indicates the average of 100 estimated curves and the shaded band illustrates the first and third quantiles. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. F.7. Parameter estimates of fMRI networks: Results of two randomly chosen individuals. For all three network statistics, one individual (first
row; permutation test p-value = 0.314) displays slightly more fluctuations than the other individual (second row; permutation test p-value = 0.681).
The ad hoc 2-step procedure and VCERGM show similar estimates.

Simpson et al. (2011, 2012) fit the ERGMs to brain networks and conducted extensive model selection. Their final
model includes network statistics such as geometrically weighted edge-wise shared partner (GWESP) and geometrically
weighted non-edge-wise shared partner (GWNSP). We keep our analysis simple for the sake of comparison of methods.
We model our rfMRI networks with three network statistics: edges, triangle and two-star and compare i) cross-sectional
ERGMs (ERGM), ii) ad hoc 2-step procedure (ERGM2) and iii) VCERGM. We leave the model selection for the VCERGM for
future research.
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Fig. F.8. Goodness of fit of the VCERGM on fMRI networks: Results of two randomly chosen individuals. Estimated coefficients from the VCERGM
were used to simulate 100 networks for each observed time point. The distribution of each network statistic (log transformed) is shown for each
time point. The log of true observed statistics of the fMRI network is shown with solid lines.

Fig. F.7 shows the results of two individuals from this study. Computing time for cross-sectional ERGMs and VCERGM
is about 1 s. As the data are the resting-state fMRI records, little fluctuation is expected in parameters over time. For both
individuals, both ad hoc 2-step procedure and VCERGM provide estimates with a small range of fluctuation for all three
network statistics. Overall, the ad hoc 2-step procedure and VCERGM provide relatively similar estimates, while both
estimates cross the cross-sectional ERGM estimates. The estimates from cross-sectional ERGMs are extremely jagged that
they may introduce inaccurate inference with regard to explaining the topological change in brain networks over time. The
VCERGM not only produces fairly static estimates but also captures small variations through time more sensitively than
ad hoc 2-step procedure. Therefore, even with relatively stable dynamic networks, the VCERGM performs consistently
well. Fig. F.8 shows the goodness of fit plots for two individuals in Fig. F.7. Similar with co-voting network, there was no
systematic bias in the simulated network statistics.
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